《高三数学知识点考点总结大全.docx》由会员分享,可在线阅读,更多相关《高三数学知识点考点总结大全.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高三数学知识点考点总结大全 奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是须要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有爱好。接下来是我为大家整理的高三数学学问点考点大全,希望大家喜爱! 高三数学学问点考点大全一 1.定义: 用符号,=,号连接的式子叫不等式。 2.性质: 不等式的两边都加上或减去同一个整式,不等号方向不变。 不等式的两边都乘以或者除以一个正数,不等号方向不变。 不等式的两边都乘以或除以同一个负数,不等号方向相反。 3.分类: 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式
2、叫一元一次不等式。 一元一次不等式组: a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。 b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 4.考点: 解一元一次不等式(组) 依据详细问题中的数量关系列不等式(组)并解决简洁实际问题 用数轴表示一元一次不等式(组)的解集 高三数学学问点考点大全二 一、排列 1定义 (1)从n个不同元素中取出m个元素,根据肯定的依次排成一列,叫做从n个不同元素中取出m个元素的一排列。 (2)从n个不同元素中取出m个元素的全部排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn. 2排列数的
3、公式与性质 (1)排列数的公式:Amn=n(n-1)(n-2)(n-m+1) 特例:当m=n时,Amn=n!=n(n-1)(n-2)321 规定:0!=1 二、组合 1定义 (1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合 (2)从n个不同元素中取出m个元素的全部组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。 2比较与鉴别 由排列与组合的定义知,获得一个排列须要“取出元素”和“对取出元素按肯定依次排成一列”两个过程,而获得一个组合只须要“取出元素”,不管怎样的依次并成一组这一个步骤。 排列与组合的区分在于组合仅与选取的元素有关,而
4、排列不仅与选取的元素有关,而且还与取出元素的依次有关。因此,所给问题是否与取出元素的依次有关,是推断这一问题是排列问题还是组合问题的理论依据。 三、排列组合与二项式定理学问点 1.计数原理学问点 乘法原理:N=n1n2n3nM(分步)加法原理:N=n1+n2+n3+nM(分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!Ann=n! Cnm=n!/(n-m)!m! Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:
5、以元素为主,应先满意特别元素的要求,再考虑其他元素.以位置为主考虑,即先满意特别位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必需在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应留意: (1)把详细问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避开“选取”时重复和遗漏; (4)列出式子计算和作答. 常常运用的数学思想是: 分类探讨思想;转化思想;对称思想. 4.二项式定理学问点: (a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+C
6、nran-rbr+-+Cnn-1abn-1+Cnnbn 特殊地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn 主要性质和主要结论:对称性Cnm=Cnn-m 二项式系数在中间。(要留意n为奇数还是偶数,答案是中间一项还是中间两项) 全部二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+Cnr+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1 通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近
7、似计算、整除问题,运用二项绽开式定理并且结合放缩法证明与指数有关的不等式。 6.留意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区分,在求某几项的系数的和时留意赋值法的应用。 高三数学学问点考点大全三 考点一:集合与简易逻辑 集合部分一般以选择题出现,属简单题。重点考查集合间关系的理解和相识。近年的试题加强了对集合计算化简实力的考查,并向无限集发展,考查抽象思维实力。在解决这些问题时,要留意利用几何的直观性,并注意集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中干脆考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的推断、全称命题和特称命题
8、的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。 考点二:函数与导数 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简洁应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于简单题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题
9、、不等式的证明等问题。 考点三:三角函数与平面对量 一般是2道小题,1道综合解答题。小题一道考查平面对量有关概念及运算等,另一道对三角学问点的补充。大题中假如没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面对量为主的试题,要留意数形结合思想在解题中的应用。向量重点考查平面对量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型. 考点四:数列与不等式 不等式主要考查一元二次不等式的解法、一元二次不等式组和简洁线性规划问题、基本不等式的应用等,通常会在小题中设置
10、1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的敏捷应用,一道解答题大多凸显以数列学问为工具,综合运用函数、方程、不等式等解决问题的实力,它们都属于中、高档题目. 考点五:立体几何与空间向量 一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有12个客观题和一个解答题,多为中档题。 考点六:解析几何 一般有12个客观题和1个解答题,其中客观题主要考查
11、直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,常常与平面对量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。 考点七:算法复数推理与证明 高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列学问的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几
12、何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问. 高三数学学问点考点大全四 1、圆柱体: 表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:R2+R(h2+R2)的平方根体积:R2h/3(r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc)V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=hS1+S2+(S1S2)1/2/3 8、拟柱体 S1-上底面积,S
13、2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C底面周长 S底底面积,S侧侧面积,S表表面积C=2r S底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h 10、空心圆柱 R-外圆半径,r-内圆半径h-高V=h(R2-r2) 11、直圆锥 r-底半径h-高V=r2h/3 12、圆台 r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3r3=d3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(3r-h)/3 15、球台 r1和r2-球台上、
14、下底半径h-高V=h3(r12+r22)+h2/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径 V=22Rr2=2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=h(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心) V=h(2D2+Dd+3d2/4)/15(母线是抛物线形) 高三数学学问点考点大全本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第12页 共12页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页