《第5章晶闸管相控触发电路.pptx》由会员分享,可在线阅读,更多相关《第5章晶闸管相控触发电路.pptx(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、晶闸管相控触发电路晶闸管门极驱动电路也称为触发电路;晶闸管通常采用相位控制方式。一般晶闸管变流电路的控制框图第1页/共49页晶闸管相控触发电路u控制电路:综合系统信息进行处理,产生和负载所需电压相适应的相位控制信号。u同步电路:获得与交流源同步的正弦交流信号,确定各元件自然换相点和移相范围。u驱动电路:移相脉冲信号进行整形处理,产生所需的触发脉冲信号。u移相控制电路:由相位控制信号和同步信号结合,产生移相 脉冲信号。同时有隔离电路:通常采用脉冲变压器,光电耦合器和光导纤维。第2页/共49页5.1 对相控触发电路的基本要求一.晶闸管的门极伏安特性晶闸管门极伏安特性图(a)为门极伏安特性区域,0D
2、为低阻特性,0G为高阻特性。图(b)为图(a)中0ABC0的放大图形。0HIJ0区域为不触发区:当晶闸管门极施加的触发电压,电流在该范围内时,任何合格的晶闸管元件都不会被触发,从而确定了晶闸管的抗干扰性能。ABCJIHA区域为不可靠触发区:当晶闸管门极施加的触发电压,电流在该区域时,有的晶闸管可以触发开通,有的则不能触发开通。因此,触发电路产生的触发信号也不应该落在该区域中。第3页/共49页对相控触发电路的基本要求晶闸管门极伏安特性ADEFGCBA区域为可靠触发区:当晶闸管门极施加的触发电压,电流在该范围时,所有合格元件均能可靠触发开通,则可以保证合格元件的通用性。第4页/共49页二.对相控触
3、发电路的基本要求(1)触发电路的触发信号必须在晶闸管门极伏安特性的可靠触发区。同时要求脉冲功率不超过允许瞬时最大功率限制线和平均功率限制线。(2)触发脉冲应具有一定的宽度,触发脉冲消失前,阳极电流应能上升至 擎住电流,保证晶闸管可靠开通。(3)触发脉冲应满足晶闸管电路的工作要求。第5页/共49页对相控触发电路的基本要求采用强触发脉冲的目的是:缩小晶闸管管间开通时间的差异,有利于动态均流和均压。(4)触发脉冲与主电路电源电压必须同步,并保持与工作状态相适应的相 位关系。(5)触发电路应保证变流电路各元件触发脉冲的对称性。(6)相控触发电路应采取电磁兼容技术措施,防止因各方面的电磁干扰而 出现失控
4、。第6页/共49页5.2 控制角 的移相控制方法 晶闸管相控触发电路中,实现触发脉冲随控制信号变化作相位移动的控制为移相控制。一.延时移相控制方法 延时移相控制方法由同步环节提供自然换相点,再由自然换相点开始计时,以控制角对应的延时时间确定触发脉冲产生的时刻。第7页/共49页控制角 的移相控制方法二.垂直移相控制方法垂直移相控制电路对usy有什么要求?单调增函数第8页/共49页1.线性垂直移相控制方法:线性垂直移相控制方法垂直移相控制方法第9页/共49页线性垂直移相控制方法线性垂直移相控制方法第10页/共49页垂直移相控制方法2.余弦交点移相控制方法:余弦交点移相控制方法第11页/共49页余弦
5、交点移相控制方法余弦交点移相控制方法第12页/共49页5.3 相控触发电路的同步方式及输出一.同步方式同步信号:与电网电压严格同步的基准信号。阻容移相滤波电路及电压相位关系 主电路电源电压经同步变压器降压,再经阻容移相,便可获得符合要求的同步信号。尽管利用同步变压器可以获得适宜相位的电压信号,为了滤除电网电压中有影响的干扰信号,提供抗干扰性能,同步变压器输出端通常设有如图所示的阻容滞后移相滤波电路。第13页/共49页同步方式同步方式的分类:单相同步利用各晶闸管自然换相点间有固定的相位关系特点,用一个元件的同步电路准确提供各元件的自然换相点。按相同步独立同步每个晶闸管都有相对独立的相控触发电路。
6、为使各晶闸管具有相同的控制角,各相触发电路采用同一控制电压进行移相控制。为实现三相主电路工作的对称性,要求三相移相控制的一致性,故三相触发电路由同一个控制电压控制。第14页/共49页相控触发电路的同步方式及输出二.触发脉冲的功率放大和输出 触发电路一般是由相对独立的低压直流电源供电的单元,为保证触发电路工作安全,应使其与主电路隔离,这样可减少主电路对触发电路及控制电路的干扰,提高可靠性。1.隔离措施:光导纤维传递能量小,高压,价格高。光电耦合器脉冲变压器应用最多传递能量小第15页/共49页触发脉冲的功率放大和输出脉冲变压器输出的典型电路脉冲变压器电路和磁路第16页/共49页相控触发电路的同步方
7、式及输出脉冲变压器输出的典型电路脉冲变压器电路和磁路第17页/共49页5.4 单结晶体管移相触发电路单结晶体管移相触发电路是一种较简单的触发电路,采用延时移相方法,主要用于小功率单相或三相半波晶闸管整流装置。一.单结晶体管单结晶体管图形符号和等效电路1.结构第18页/共49页2.单结晶体管工作原理上述工作区域为单结晶体管的截止区11第19页/共49页单结晶体管工作原理1第20页/共49页单结晶体管工作原理1第21页/共49页二.单结晶体管弛张振荡电路单结晶体管弛张振荡电路及波形1.电路结构2.工作原理111第22页/共49页单结晶体管弛张振荡电路单结晶体管弛张振荡电路及波形第23页/共49页
8、三、具有同步环节的单结晶体管触发电路 单结晶体管同步触发电路第24页/共49页具有同步环节的单结晶体管触发电路 实际应用中,常用晶体管V代替可调电阻器Re,以便实现自动移相,同时脉冲的输出一般通过脉冲变压器TP,以实现触发电路与主电路的电气隔离。带输出脉冲变压器的单结晶体管触发电路第25页/共49页5.5 垂直移相相控触发电路举例输出可为双窄脉冲(适用于有两个晶闸管同时导通的电路),也可为单窄脉冲。五个基本环节:同步环节、锯齿波的形成和脉冲移相、脉冲的形成与放大。此外,还有强触发和双窄脉冲形成环节。锯齿波垂直移相相控触发电路第26页/共49页1.同步环节同步要求触发脉冲的频率与主电路电源的频率
9、相同且相位关系确定。工作过程35第27页/共49页同步环节工作过程36第28页/共49页2.锯齿波的形成和移相控制锯齿波的形成 由V1、V2、V3、R3、R4、R5、C2、RP1、RW1组成;其中:V1、RP1、R3、RW1组成恒流源;V3、R5为射级输出器。37第29页/共49页2.锯齿波的形成和移相控制锯齿波的形成同步开关V2周期性变化时,C2端形成一锯齿波。锯齿波是由开关V2管来控制的:锯齿波的频率由同步变压器所接的交流电压决定。V2管的开关频率锯齿波起点 V2由导通变截止期间产生锯齿波,起点基本就是同步 电压由正变负的过零点。斜率由RP1调节锯齿波的宽度 V2截止状态持续的时间,取决于
10、充电时间常数R1C1。38第30页/共49页移相控制2.锯齿波的形成和移相控制由V3、V4组成;移相控制有三个信号:up:偏移电压uh:锯齿波uk:控制电压 V4基极电位由锯齿波电压uh、控制电压uk、直流偏移电压up三者作用的叠加所定。39第31页/共49页4.脉冲形成环节up+uh+uk 0时up+uh+uk 0时34第32页/共49页4.脉冲形成环节第33页/共49页5.强触发脉冲形成环节45第34页/共49页6.双窄脉冲形成环节V5、V6构成“或”门当V5、V6都导通时,V7、V8都截止,没有脉冲输出。只要V5、V6有一个截止,都会使V7、V8导通,有脉冲输出。第一个脉冲由本相触发单元
11、的uk对应的控制角 产生。隔60的第二个脉冲是由滞后60相位的后一相触发单元产生。第35页/共49页 对于三相全控桥电路,电源三相U、V、W为正相序时,6只晶闸管的触发顺序为VT1 VT2VT3VT4VT5VT6彼此间隔60,为了得到双脉冲,6块触发板的X、Y可按下图所示方式连接,即后相的X端与前相的Y端相连。实现双脉冲连接的示意图 双窄脉冲形成第36页/共49页KC04、KC09、KC41C集成触发电路集成触发电路第37页/共49页数字触发电路微机控制数字触发系统框图第38页/共49页单片机触发系统的硬件设置系统硬件配置框图第39页/共49页31第40页/共49页26第41页/共49页27第42页/共49页28第43页/共49页29第44页/共49页30第45页/共49页34第46页/共49页第47页/共49页第48页/共49页感谢您的观看!第49页/共49页