《理学章热力学第一定律及其应用.pptx》由会员分享,可在线阅读,更多相关《理学章热力学第一定律及其应用.pptx(148页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023/3/19第一章 热力学第一定律及其应用 1.9 赫斯定律 1.10 几种热效应 1.11 反应热与温度的关系基尔霍夫定律 1.12 绝热反应非等温反应 *1.13 热力学第一定律的微观说明第1页/共148页2023/3/191.1 1.1 热力学概论热力学的研究对象热力学的方法和局限性体系与环境体系的分类体系的性质热力学平衡态状态函数状态方程热和功几个基本概念:第2页/共148页2023/3/19热力学的研究对象研究热、功和其他形式能量之间的相互转换及 其转换过程中所遵循的规律;研究各种物理变化和化学变化过程中所发生的能量效应;研究化学变化的方向和限度。第3页/共148页2023/3
2、/19热力学的方法和局限性热力学方法研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。只考虑变化前后的净结果,不考虑物质的微观结构和反应机理。能判断变化能否发生以及进行到什么程度,但不考虑变化所需要的时间。局限性 不知道反应的机理、速率和微观性质,只讲可能性,不讲现实性。第4页/共148页2023/3/19体系与环境体系(System)在科学研究时必须先确定研究对象,把一部分物质与其余分开,这种分离可以是实际的,也可以是想象的。这种被划定的研究对象称为体系,亦称为物系或系统。环境(surroundings)与体系密切相关、有相互作用或影响所能及的部分称为环境。第5页/共148页
3、2023/3/19体系分类 根据体系与环境之间的关系,把体系分为三类:(1)敞开体系(open system)体系与环境之间既有物质交换,又有能量交换。第6页/共148页2023/3/19体系分类 根据体系与环境之间的关系,把体系分为三类:(2)封闭体系(closed system)体系与环境之间无物质交换,但有能量交换。第7页/共148页2023/3/19体系分类 根据体系与环境之间的关系,把体系分为三类:(3)孤立体系(isolated system)体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。有时把封闭体系和体系影响所及的环境一起作为孤立体系来考虑。第8页/共148页20
4、23/3/19体系分类第9页/共148页2023/3/19体系的性质 用宏观可测性质来描述体系的热力学状态,故这些性质又称为热力学变量。可分为两类:广度性质(extensive properties)又称为容量性质,它的数值与体系的物质的量成正比,如体积、质量、熵等。这种性质有加和性,在数学上是一次齐函数。强度性质(intensive properties)它的数值取决于体系自身的特点,与体系的数量无关,不具有加和性,如温度、压力等。它在数学上是零次齐函数。指定了物质的量的容量性质即成为强度性质,如摩尔热容。第10页/共148页2023/3/19热力学平衡态 当体系的诸性质不随时间而改变,则体
5、系就处于热力学平衡态,它包括下列几个平衡:热平衡(thermal equilibrium)体系各部分温度相等。力学平衡(mechanical equilibrium)体系各部的压力都相等,边界不再移动。如有刚壁存在,虽双方压力不等,但也能保持力学平衡。第11页/共148页2023/3/19热力学平衡态相平衡(phase equilibrium)多相共存时,各相的组成和数量不随时间而改变。化学平衡(chemical equilibrium)反应体系中各物的数量不再随时间而改变。当体系的诸性质不随时间而改变,则体系就处于热力学平衡态,它包括下列几个平衡:第12页/共148页2023/3/19状态函
6、数 体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。具有这种特性的物理量称为状态函数(state function)。状态函数的特性可描述为:异途同归,值变相等;周而复始,数值还原。状态函数在数学上具有全微分的性质。第13页/共148页2023/3/19状态方程 体系状态函数之间的定量关系式称为状态方程(state equation)。对于一定量的单组分均匀体系,状态函数T,p,V 之间有一定量的联系。经验证明,只有两个是独立的,它们的函数关系可表示为:T=f(p,V)p=f(T,V)V=f(p,T)例如,理想气体的状态
7、方程可表示为:pV=nRT第14页/共148页2023/3/19热和功功(work)Q和W都不是状态函数,其数值与变化途径有关。体系吸热,Q0;体系放热,Q0;体系对环境作功,W0。第15页/共148页2023/3/191 12 2 热力学第一定律热功当量能量守恒定律热力学能第一定律的文字表述第一定律的数学表达式第16页/共148页2023/3/19热功当量焦耳(Joule)和迈耶(Mayer)自1840年起,历经20多年,用各种实验求证热和功的转换关系,得到的结果是一致的。这就是著名的热功当量,为能量守恒原理提供了科学的实验证明。即:1 cal=4.1840 J第17页/共148页2023/
8、3/19能量守恒定律 到1850年,科学界公认能量守恒定律是自然界的普遍规律之一。能量守恒与转化定律可表述为:自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种形式,但在转化过程中,能量的总值不变。第18页/共148页2023/3/19热力学能 热力学能(thermodynamic energy)以前称为内能(internal energy),它是指体系内部能量的总和,包括分子运动的平动能、分子内的转动能、振动能、电子能、核能以及各种粒子之间的相互作用位能等。热力学能是状态函数,用符号U表示,它的绝对值尚无法测定,只能求出它的变化值。第19页/共148页2023/3/1
9、9第一定律的文字表述热力学第一定律(The First Law of Thermodynamics)是能量守恒与转化定律在热现象领域内所具有的特殊形式,说明热力学能、热和功之间可以相互转化,但总的能量不变。也可以表述为:第一类永动机是不可能制成的。第一定律是人类经验的总结。第20页/共148页2023/3/19第一定律的文字表述第一类永动机(first kind of perpetual motion mechine)一种既不靠外界提供能量,本身也不减少能量,却可以不断对外作功的机器称为第一类永动机,它显然与能量守恒定律矛盾。历史上曾一度热衷于制造这种机器,均以失败告终,也就证明了能量守恒定律
10、的正确性。第21页/共148页2023/3/19第一定律的数学表达式U=Q+W对微小变化:dU=Q+W 因为热力学能是状态函数,数学上具有全微分性质,微小变化可用dU表示;Q和W不是状态函数,微小变化用表示,以示区别。也可用U=Q-W表示,两种表达式完全等效,只是W的取号不同。用该式的W取号为:环境对体系作功,W0。第22页/共148页2023/3/19热和功体系吸热体系放热W0W0Q0对环境作功对体系作功环境U=Q+WU 0U 0第23页/共148页2023/3/19热和功体系吸热体系放热W 0Q0对环境作功对体系作功环境U=Q-WU 0U 0 经节流膨胀后,气体温度降低。称为焦-汤系数(J
11、oule-Thomson coefficient),它表示经节流过程后,气体温度随压力的变化率。是体系的强度性质。因为节流过程的 ,所以当:0 经节流膨胀后,气体温度升高。=0 经节流膨胀后,气体温度不变。第73页/共148页2023/3/19转化温度(inversion temperature)当 时的温度称为转化温度,这时气体经焦-汤实验,温度不变。在常温下,一般气体的 均为正值。例如,空气的 ,即压力下降 ,气体温度下降 。但 和 等气体在常温下,经节流过程,温度反而升高。若降低温度,可使它们的 。第74页/共148页2023/3/19等焓线(isenthalpic curve)为了求
12、的值,必须作出等焓线,这要作若干个节流过程实验。如此重复,得到若干个点,将点连结就是等焓线。实验1,左方气体为 ,经节流过程后终态为 ,在T-p图上标出1、2两点。实验2,左方气体仍为 ,调节多孔塞或小孔大小,使终态的压力、温度为 ,这就是T-p图上的点3。气体的等焓线第75页/共148页2023/3/19等焓线(isenthalpic curve)图1.9 气体的等焓线第76页/共148页2023/3/19显然,在点3左侧,等焓线(isenthalpic curve)在点3右侧,在点3处,。在线上任意一点的切线 ,就是该温度压力下的 值。气体的等焓线第77页/共148页2023/3/19转化
13、曲线(inversion curve)在虚线以左,是致冷区,在这个区内,可以把气体液化;虚线以右,是致热区,气体通过节流过程温度反而升高。选择不同的起始状态 ,作若干条等焓线。将各条等焓线的极大值相连,就得到一条虚线,将T-p图分成两个区域。第78页/共148页2023/3/19转化曲线(inversion curve)第79页/共148页2023/3/19转化曲线(inversion curve)显然,工作物质(即筒内的气体)不同,转化曲线的T,p区间也不同。例如,的转化曲线温度高,能液化的范围大;而 和 则很难液化。第80页/共148页2023/3/19转化曲线(inversion cur
14、ve)第81页/共148页2023/3/19决定 值的因素对定量气体,经过Joule-Thomson实验后,故:值的正或负由两个括号项内的数值决定。代入得:第82页/共148页2023/3/19决定 值的因素实际气体 第一项大于零,因为 实际气体分子间有引力,在等温时,升 高压力,分子间距离缩小,分子间位能 下降,热力学能也就下降。理想气体 第一项等于零,因为第83页/共148页2023/3/19决定 值的因素理想气体 第二项也等于零,因为等温时pV=常数,所以理想气体的 。实际气体 第二项的符号由 决定,其数值可从pV-p等温线上求出,这种等温线由气体自身的性质决定。第84页/共148页20
15、23/3/19实际气体的pV-p等温线 273 K时 和 的pV-p等温线,如图所示。1.H2要使 ,必须降低温度。则第二项小于零,而且绝对值比第一项大,所以在273 K时,的 。第85页/共148页2023/3/19实际气体的pV-p等温线2.CH4在(1)段,所以第二项大于零,;在(2)段,第二项小于零,的符号决定于第一、二项的绝对值大小。通常,只有在第一段压力较小时,才有可能将它液化。第86页/共148页2023/3/19将 称为内压力,即:实际气体的内压力(internal pressure)实际气体的 不仅与温度有关,还与体积(或压力)有关。因为实际气体分子之间有相互作用,在等温膨胀
16、时,可以用反抗分子间引力所消耗的能量来衡量热力学能的变化。第87页/共148页2023/3/19van der Waals 方程 如果实际气体的状态方程符合van der Waals 方程,则可表示为:式中 是压力校正项,即称为内压力;是体积校正项,是气体分子占有的体积。第88页/共148页2023/3/19van der Waals 方程等温下,实际气体的 不等于零。第89页/共148页2023/3/19 1.8 热化学反应进度等压、等容热效应热化学方程式压力的标准态第90页/共148页2023/3/19反应进度(extent of reaction )20世纪初比利时的Dekonder引进
17、反应进度 的定义为:和 分别代表任一组分B 在起始和 t 时刻的物质的量。是任一组分B的化学计量数,对反应物取负值,对生成物取正值。设某反应 单位:mol第91页/共148页2023/3/19反应进度(extent of reaction )引入反应进度的优点:在反应进行到任意时刻,可以用任一反应物或生成物来表示反应进行的程度,所得的值都是相同的,即:反应进度被应用于反应热的计算、化学平衡和反应速率的定义等方面。注意:应用反应进度,必须与化学反应计量方程相对应。例如:当 都等于1 mol 时,两个方程所发生反应的物质的量显然不同。第92页/共148页2023/3/19等压、等容热效应反应热效应
18、 当体系发生反应之后,使产物的温度回到反应前始态时的温度,体系放出或吸收的热量,称为该反应的热效应。等容热效应 反应在等容下进行所产生的热效应为 ,如果不作非膨胀功,,氧弹量热计中测定的是 。等压热效应 反应在等压下进行所产生的热效应为 ,如果不作非膨胀功,则 。第93页/共148页2023/3/19等压、等容热效应 与 的关系当反应进度为1 mol 时:式中 是生成物与反应物气体物质的量之差值,并假定气体为理想气体。或 第94页/共148页2023/3/19等压、等容热效应反应物生成物(3)(2)等容 与 的关系的推导生成物 第95页/共148页2023/3/19等压、等容热效应反应物生成物
19、(3)(2)等容 生成物 对于理想气体,所以:第96页/共148页2023/3/19热化学方程式 表示化学反应与热效应关系的方程式称为热化学方程式。因为U,H的数值与体系的状态有关,所以方程式中应该注明物态、温度、压力、组成等。对于固态还应注明结晶状态。例如:298.15 K时 式中:表示反应物和生成物都处于标准态时,在298.15 K,反应进度为1 mol 时的焓变。代表气体的压力处于标准态。第97页/共148页2023/3/19热化学方程式焓的变化反应物和生成物都处于标准态反应进度为1 mol反应(reaction)反应温度第98页/共148页2023/3/19热化学方程式反应进度为1 m
20、ol,表示按计量方程反应物应全部作用完。若是一个平衡反应,显然实验所测值会低于计算值。但可以用过量的反应物,测定刚好反应进度为1 mol 时的热效应。反应进度为1 mol,必须与所给反应的计量方程对应。若反应用下式表示,显然焓变值会不同。第99页/共148页2023/3/19压力的标准态 随着学科的发展,压力的标准态有不同的规定:用 表示压力标准态。最老的标准态为 1 atm1985年GB规定为 101.325 kPa1993年GB规定为 1105 Pa。标准态的变更对凝聚态影响不大,但对气体的热力学数据有影响,要使用相应的热力学数据表。第100页/共148页2023/3/19压力的标准态气体
21、的标准态:压力为 的理想气体,是假想态。固体、液体的标准态:压力为 的纯固体或纯液体。标准态不规定温度,每个温度都有一个标准态。一般298.15 K时的标准态数据有表可查。为方便起见,298.15 K用符号 表示。第101页/共148页2023/3/191.9 1.9 赫斯定律(Hesss law)1840年,赫斯根据实验事实提出了一个定律:反应的热效应只与起始和终了状态有关,与变化途径无关。不管反应是一步完成的,还是分几步完成的,其热效应相同,当然要保持反应条件(如温度、压力等)不变。应用:对于进行得太慢的或反应程度不易控制而无法直接测定反应热的化学反应,可以用赫斯定律,利用容易测定的反应热
22、来计算不容易测定的反应热。第102页/共148页2023/3/19赫斯定律例如:求C(s)和 生成CO(g)的反应热。已知:(1)(2)则(1)-(2)得(3)(3)第103页/共148页2023/3/191.10 几种热效应化合物的生成焓离子生成焓燃烧焓溶解热稀释热第104页/共148页2023/3/19化合物的生成焓没有规定温度,一般298.15 K时的数据有表可查。生成焓仅是个相对值,相对于稳定单质的焓值等于零。标准摩尔生成焓(standard molar enthalpy of formation)在标准压力下,反应温度时,由最稳定的单质合成标准状态下一摩尔物质的焓变,称为该物质的标准
23、摩尔生成焓,用下述符号表示:(物质,相态,温度)第105页/共148页2023/3/19化合物的生成焓例如:在298.15 K时这就是HCl(g)的标准摩尔生成焓:反应焓变为:第106页/共148页2023/3/19化合物的生成焓 为计量方程中的系数,对反应物取负值,生成物取正值。利用各物质的摩尔生成焓求化学反应焓变:在标准压力 和反应温度时(通常为298.15 K)第107页/共148页2023/3/19自键焓估算生成焓 一切化学反应实际上都是原子或原子团的重新排列组合,在旧键破裂和新键形成过程中就会有能量变化,这就是化学反应的热效应。键的分解能 将化合物气态分子的某一个键拆散成气态原子所需
24、的能量,称为键的分解能即键能,可以用光谱方法测定。显然同一个分子中相同的键拆散的次序不同,所需的能量也不同,拆散第一个键花的能量较多。键焓 在双原子分子中,键焓与键能数值相等。在含有若干个相同键的多原子分子中,键焓是若干个相同键键能的平均值。第108页/共148页2023/3/19自键焓估算生成焓则O-H(g)的键焓等于这两个键能的平均值 例如:在298.15 K时,自光谱数据测得气相水分子分解成气相原子的两个键能分别为:第109页/共148页2023/3/19自键焓估算生成焓 美国化学家 LPauling 假定一个分子的总键焓是分子中所有键的键焓之和,这些单独的键焓值只由键的类型决定。这样,
25、只要从表上查得各键的键焓就可以估算化合物的生成焓以及化学反应的焓变。显然,这个方法是很粗略的,一则所有单键键焓的数据尚不完全,二则单键键焓与分子中实际的键能会有出入。第110页/共148页2023/3/19离子生成焓 因为溶液是电中性的,正、负离子总是同时存在,不可能得到单一离子的生成焓。所以,规定了一个目前被公认的相对标准:标准压力下,在无限稀薄的水溶液中,的摩尔生成焓等于零。其它离子生成焓都是与这个标准比较的相对值。第111页/共148页2023/3/19离子生成焓查表得规定:所以:例如:第112页/共148页2023/3/19燃烧焓下标“c”表示combustion。上标“y”表示各物均
26、处于标准压力下。下标“m”表示反应物为1 mol时。在标准压力下,反应温度时,物质B完全氧化成相同温度的指定产物时的焓变称为标准摩尔燃烧焓(Standard molar enthalpy of combustion)用符号 (物质、相态、温度)表示。第113页/共148页2023/3/19燃烧焓指定产物通常规定为:金属 游离态显然,规定的指定产物不同,焓变值也不同,查表时应注意。298.15 K时的燃烧焓值有表可查。第114页/共148页2023/3/19燃烧焓例如:在298.15 K及标准压力下:则 显然,根据标准摩尔燃烧焓的定义,所指定产物如 等的标准摩尔燃烧焓,在任何温度T时,其值均为零
27、。第115页/共148页2023/3/19利用燃烧焓求化学反应的焓变 化学反应的焓变值等于各反应物燃烧焓的总和减去各产物燃烧焓的总和。例如:在298.15 K和标准压力下,有反应:(A)(B)(C)(D)则用通式表示为:第116页/共148页2023/3/19利用燃烧焓求生成焓 用这种方法可以求一些不能由单质直接合成的有机物的生成焓。该反应的反应焓变就是 的生成焓,则:例如:在298.15 K和标准压力下:第117页/共148页2023/3/19溶解热溶解热是指溶解过程中的焓变值,通常分为两种:积分溶解热:一定的溶质溶于一定量的溶剂中所产生的热效应的总和。这个溶解过程是一个溶液浓度不断改变的过
28、程。由于加入溶质量很少,溶液浓度可视为不变。微分溶解热:在给定浓度的溶液里,加入 溶质时,所产生的热效应与加入溶质量的比值。用公式表示为:第118页/共148页2023/3/19稀释热稀释热也可分为两种:积分稀释热:把一定量的溶剂加到一定量的溶液中所产生的热效应。它的值可以从积分溶解热求得。它的值无法直接测定,从积分溶解热曲线上作切线求得。微分稀释热:在一定浓度的溶液中加入 溶剂所产生的热效应与加入溶剂量的比值,第119页/共148页2023/3/191.11基尔霍夫定律 反应焓变值一般与温度关系不大。如果温度区间较大,在等压下虽化学反应相同,但其焓变值则不同。在1858年首先由Kirchof
29、f提出了焓变值与温度的关系式,所以称为Kirchoff定律,有两种表示形式。也是温度的函数,只要将Cp-T的关系式代入,就可从一个温度时的焓变求另一个温度下的焓变。如有物质发生相变,就要进行分段积分。第120页/共148页2023/3/191.12绝热反应 绝热反应仅是非等温反应的一种极端情况,由于非等温反应中焓变的计算比较复杂,所以假定在反应过程中,焓变为零,则可以利用状态函数的性质,求出反应终态温度。例如,燃烧,爆炸反应,由于速度快,来不及与环境发生热交换,近似作为绝热反应处理,以求出火焰和爆炸产物的最高温度。第121页/共148页2023/3/191.12绝热反应求终态温度的示意图 设反
30、应物起始温度均为T1,产物温度为T2,整个过程保持压力不变:第122页/共148页2023/3/191.12绝热反应根据状态函数的性质可由 表值计算可求出从而可求出T2值第123页/共148页2023/3/191.13热力学第一定律的微观说明&热力学能&功&热&热和功微观说明示意图&热容&运动自由度&单原子分子的平动能&能量均分原理第124页/共148页2023/3/19热力学能 设在一个封闭的近独立子体系(粒子之间相互作用能很少)中,粒子的总数为N,分布在能量不同的 个能级上,在 能级上的粒子数为 ,则有:对(2)式微分,得:对照宏观的第一定律,就可找出 和 与微观量的对应关系。第125页/
31、共148页2023/3/19功 项是各能级上粒子数不变,能级升高或降低所引起的热力学能的变化值。根据物理中的力学性质,在力 的作用下,使体系边界在 方向上发生了 的位移,则所作的功为:则总的功为:第126页/共148页2023/3/19功 由于体系与环境有了功的交换,体系的能量就会变化。物理学中的能量梯度就是力(力的正、负号取决于作用的方向),则 当粒子的能量坐标改变时,环境对分布在各能级上的 个粒子所作的总功为:第127页/共148页2023/3/19热项代表热,说明能级保持不变,而各能级上的粒子数发生改变。体系在吸热时,分布在高能级上的粒子数增多,在低能级上的粒子数减少;放热时,分布在高能
32、级上的粒子数减少而在低能级上的粒子数增多。第128页/共148页2023/3/19热和功微观说明示意图功和热的微观说明(示意图)(a)图(a)是某热力学体系在平衡态时的正常分布。纵坐标表示能量,若干水平线表示能级。横坐标表示粒子数,能级线段的长短表示粒子数的多少。第129页/共148页2023/3/19热和功微观说明示意图功和热的微观说明(示意图)(b)当体系吸热时,高能级上的粒子数增多,低能级上粒子数减少,但能级未变,最后分布如红线所示。第130页/共148页2023/3/19热和功微观说明示意图功和热的微观说明(示意图)(b)体系放热时,情形刚好相反,最后分布如兰线所示。第131页/共14
33、8页2023/3/19热和功微观说明示意图功和热的微观说明(示意图)(c)当环境对体系作功时,体系能级升高,而各能级上的粒子数未变,如红线所示,相当于分布图往上平移。当体系对外作功时,则分布图将向下平移。第132页/共148页2023/3/19热容 热力学能是粒子内部能量的总和,主要包括平动(t)、转动(r)、振动(v)、电子(e)和核(n)等能量的总和。所以CV也是各种运动方式所贡献的总和:由于电子和核的能级间隔大,通常温度下都处于基态,它们对CV的贡献一般可以忽略,则CV的表示式为:定容热容CV与热力学能的关系为:第133页/共148页2023/3/19运动自由度 物理学中把决定物体在空间
34、位置所需的独立坐标数称为自由度。而转动、振动的自由度随组成分子的原子数和结构不同而不同。平动自由度均等于3;对于含n个原子的分子,共有3n个自由度。第134页/共148页2023/3/19运动自由度平动自由度转动自由度振动自由度分子种类单原子分子300双原子分子321线性多原子分子323n-5非线性多原子分子333n-6第135页/共148页2023/3/19单原子分子的平动能 单原子分子近似可看作刚性球。在直角坐标上,它的平动可分解为x,y,z三个方向的运动。在 x 方向的平动能的平均值 为:根据气体分子运动论和Maxwell的速率分布公式,在x方向的速度平方的平均值 为:所以第136页/共
35、148页2023/3/19单原子分子的平动能同理则单原子分子的总平动能 为:第137页/共148页2023/3/19 如果把每一个平方项称为一个自由度,则能量是均匀地分配在每一个自由度上,这就是经典的能量均分原理。能量均分原理 经典热力学中,把每一个方向上的平均能量称为一个平方项,它对总能量的贡献为 。一个振动自由度,动能和位能各贡献 ,所以对能量总的贡献为kT。对1 mol单原子气体分子,则:第138页/共148页2023/3/19能量均分原理对1 mol双原子气体分子低温时:高温时:因为振动能级间隔大,低温时振动处于基态,对能量贡献可忽略不计。第139页/共148页2023/3/19JAM
36、ES PRESCOTT JOULEJAMES PRESCOTT JOULE(1818-1889)English physicist,had the strength of mind to put science ahead of beer.He owned a large brewery but neglected its management to devote himself to scientific research.His name is associated with Joules law,which states that the rate at which heat is di
37、ssipated by a resistor is given by I2R.He was the first to carry out precise measurements of the mechanical equivalent of heat;and the firmly established that work can be quantitatively converted heat.第140页/共148页2023/3/19JOSEPH LOUIS GAY-LUSSACJOSEPH LOUIS GAY-LUSSAC(1778-1850)French chemist,was a p
38、ioneer in balloon ascensions.In 1804,Gay-Lussac made several balloon ascensions to altitudes as high as 7000 m,where he made observations on magnetism,temperature,humidity,and the composition of air.He could not find any variation of compositions with height.In 1809,he pointed out that gases combine
39、 in simple proportions by volume;and this is still called Gay-Lussacs work on chlorine brought the scientist into controversy with Sir Humphry Davy.第141页/共148页2023/3/19JOSEPH LOUIS GAY-LUSSACGay-Lussac assumed chlorine to be an oxygen-containing compound,while Davy correctly considered it an element
40、,a view that Gay-Lussac eventually accepted.He showed that prussic acid contained hydrogen but no oxygen.Lavoisier had insisted that oxygen was the critical constituent of acids,and Gay-Lussac.Gay-Lussac was one of the tubing,all of which had to be imported from German,and the French had an import d
41、uty on glass tubing.He instructed his German supplier to seal both ends of each piece of tubing and label the tubes“German air.”The French government had no duty listed for“German air”,and he was able to import his tubing duty free.第142页/共148页2023/3/19WILLIAM THOMSON,Lord Kelvin WILLIAM THOMSON,Lord
42、 Kelvin(1824-1907)Irish-born British physicist,proposed his absolute scale of temperature,which is independent of the thermometric substance in 1848.In one of his earliest papers dealing with heat conduction of the earth,Thomson showed that about 100 million years ago,the physical condition of the e
43、arth must have been quite different from that of today.He did fundamental work in telegraphy,and navigation.For his services in trans-Atlantic telegraphy,Thomson was raised to the peerage,with the title Baron Kelvin of Larg.There was no heir to the title,and it is now extinct.第143页/共148页2023/3/19HES
44、S HESS(1802-1852)俄国化学家,1802年出生于德国。在1836年提出了著名的赫斯定律。赫斯定律是热化学的最基本规律。根据这个定律,热化学公式可以互相加减,从一些反应的反应热可求出另一些反应的反应热。这个定律的发现以及当时所采用的实验方法,为以后热力学第一定律的确立奠定了实验基础。第144页/共148页2023/3/19LINUS CARL PAULINGLINUS CARL PAULING(born 1901)American chemist,did his earliest work in crystal structure determinations,using X-ra
45、y diffraction.The early years of his career coincided with the development of quantum mechanics,and his interest in structural chemistry led him to a variety of quantum mechanical investigations concerned with the solid and nonsolid states of matter.After the war,his interests turned partly to bioch
46、emistry,and Pauling discovered the cause of sickle-cell anemia.第145页/共148页2023/3/19LINUS CARL PAULINGHe received the Nobel Prize in chemistry in 1954 for his research into the natrue of the chemical bond and the structure of complex molecules.In the late 1950s and early 1960s,he was one of the most
47、vocal opponents of atomic bomb testing,and received the Nobel Peace Prize in 1963 for his efforts on behalf of the nuclear ban treaty,thereby becoming the only person to win two individual Nobel awards.第146页/共148页2023/3/19KIRCHOFF,GUSTER ROBERTKIRCHOFF,GUSTER ROBERT(1824-1887)德国物理化学家。1858年发表了著名的基尔霍夫定律。该定律描述了反应的等压热效应和温度之间的关系。根据基尔霍夫公式,可以从一个温度时的反应热求得另一个温度时的反应热。第147页/共148页2023/3/19感谢您的观看!第148页/共148页