《现代土木工程施工技术盾构法施工.pptx》由会员分享,可在线阅读,更多相关《现代土木工程施工技术盾构法施工.pptx(60页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、盾构隧道的历史用盾构法修建隧道开始于1818年,法国工程师布鲁诺尔;1825年在英国泰晤士河下首次用矩形盾构建造隧道;近代,日本盾构法得到了迅速发展,用途越来越广,并研制了大量新型盾构;我国于1957年北京下水道工程中首次出现2.6m小盾构;上海市延安东路过江道路隧道使用11.0 m直径的大盾构;第1页/共60页隧道剖面图1-进风道;2-进风口;3-排风口;4-排风道;5-路面(下拉杆)6-天棚(上拉杆);7-吊杆;8-照明灯;9-灭火器;10-消防栓;11-电缆;12-排水管;13-给水管;14-纵向螺栓;15-环向螺栓第2页/共60页盾构按形状分类 大致有圆形(又称半盾构)、矩形、马蹄形等
2、几种。圆形因其抵抗水土压力较理想,衬砌拼装简便,构件可以互换,较为通用,数量最多。圆形盾构中,敞胸盾构和闭胸盾构两大类。按开挖方式分为:人工挖掘式、半机械挖掘式、机械挖掘式。第3页/共60页10.2 盾构构造和分类10.2.1 盾构的基本构造1-1(切口环);2-2(支承环);3-3(纵剖面)通常由盾构壳体、推进系统、拼装系统、出土系统等四大部分组成。第4页/共60页1)盾构壳体盾构壳体由切口环、支承环、盾尾与竖直隔板、水平隔板组成,并由外壳钢板连成整体。切口环:开挖;上下宽度可以等值、也可以不等值,甚至是活动的。容纳各种专门的挖土设备。支承环:承受荷重的核心部分,刚性较好的圆环结构。水平隔板
3、和竖直隔板:增加盾构刚度,水平承受拉力,竖直承受压力。盾尾:掩护工人在其内部安装衬砌。第5页/共60页2)推进系统由盾构千斤顶和液压设备组成,上下左右活塞杆伸出长度不同达到纠偏目的。盾构千斤顶一般是沿支承环圆周均匀分布的;第6页/共60页3)拼装系统衬砌拼装器又称举重臂,是拼装系统的主要设备,以油压系统为动力,一般举重臂均安装在支承环上。举重臂能作旋转、径向运动,还能沿隧道中轴线作往复运动。完成这些运动的精度应该保证待装配的管片上的螺栓孔能和已装配好的螺栓孔对齐,以便螺栓固定。第7页/共60页4)出土系统出土方式一般有三种:(1)有轨运输:皮带运输机矿车洞口垂直起吊至地面。(2)无轨运输:自卸
4、卡车(3)管道运输:混合泥浆,压力输出,出土连续化 第8页/共60页第9页/共60页第10页/共60页10.2.2 盾构分类及其适用范围1)人工开掘式、半机械式敞胸盾构全部敞开,随时观察地层变化情况,并配备简便的液压、风动挖掘,机具、人工挖掘,当开挖面难以保持稳定时可以采用气压等人工措施及正面支撑、支撑千斤顶等随挖随撑。第11页/共60页2)挤压式闭胸盾构在塑性粘土及淤泥中采用,盾构正面用胸板密闭起来。厚兰隧道、林肯隧道和打浦路隧道都采用过半挤压及全挤压推进的闭胸盾构施工.衬砌结构常发生椭圆率的现象,先衬砌水平直径缩小,竖向直径增大,继之,盾构离远时,竖向直径减小,水平直径增大。主要是隧道上方
5、土壤结构破坏、隆起,形成一个卸载拱,而水平压力仍然保持着初始数值之故。3)机械式闭胸盾构n(1)局部气压盾构 n(2)泥水加压式盾构n (3)土压平衡式盾构第12页/共60页挖掘方式构造类型盾构名称开挖面稳定措施适用地层附注人工开挖(手掘式)敞胸普通盾构临时挡板、支撑千斤顶地质稳定或松软均可辅以气压、人工井点降水及其它地层加固措施棚式盾构将开挖面分成几层,利用砂的安息角和棚的磨擦砂性土网格式盾构利用土和钢制网状硌栅的磨擦粘土淤泥闭胸半挤压盾构胸板局部开孔依赖盾构千斤顶推力土砂自然流入软可塑的粘性土全挤压盾构胸板无孔、不进土淤泥半机械式敞胸反铲式盾构手掘式盾构装上反铲挖土机土质坚硬稳定开挖面能自
6、立辅助措施旋转式盾构同上,装上软岩掘进机软岩机械式敞胸旋转刀盘式盾构单刀盘加面板多刀盘加面板软岩辅助措施闭胸局中气压盾构面板和隔板间加气压多水松软地层不再另设辅助措施泥水加压盾构面板和隔板间加压力泥水含水地层、冲积层、洪积层辅助措施土压平衡盾构(加水式、加泥式)面板和隔板间充满土砂容积产生的压力与开挖面处的地层压力保持平衡淤泥、淤泥混砂辅助措施第13页/共60页第14页/共60页10.2.4 盾构几何尺寸的选定及盾构千斤顶推力计算主要指盾构外径D和盾构长度L、盾构灵敏度L/D。最小建筑空隙值x x=m=mD=d+2(x+)=0.02+0.01(D-4)第15页/共60页2)盾构长度LL=L0+
7、L1+L2+L3L0盾尾长度;L1支承环长度;L2切口环长度;L3前檐长度。第16页/共60页3)盾构灵敏度L/D 经验数值:小型盾构D=23m,L/D=1.5中型盾构D=36m,L/D=1.00大型盾构D=69m,L/D=0.75特大型盾构D12m,L/D=0.450.75第17页/共60页4)盾构千斤顶推力计算阻力包括:盾构外表面与四周地层的摩阻力;盾尾内壳与衬砌结构之间的摩阻力;盾构切口部分刃口切入土层的阻力;盾构切口环切入土层时的正面阻力;开挖面正面支撑阻力;以及盾构自重引起的阻力,纠偏时的阻力,局部气压或泥水压力,阻力板阻力等。第18页/共60页盾构总推力隧道名称直径D(m)长度L(
8、m)灵敏度L/D重量W(t)盾构千斤顶(只数)(104N)盾壳厚度(mm)附注荷兰Vehicular9.175.730.6340030600070美国林肯隧道9.634.710.4930428644063=12.7美Brooklyn-battery9.634.710.4931528644063=12.7美Queen-Midtown9.655.700.59285600比Antwerpen9.505.500.57627532640070Rotherhite9.355.490.586406700原苏联莫斯科地铁9.504.730.5340363500中国上海打浦路隧道10.206.630.65400
9、408000中国上海延安东路隧道11.267.800.69480448800日本盾构总推力经验公式第19页/共60页10.3 盾构推进及衬砌拼装10.3.1 盾构推进已建隧道所采用过的大直径盾构,大部分都属于手掘式敞胸盾构或闭胸挤压盾构,或者是两者兼有的盾构。技术先进的泥水盾构或土压平衡盾构很少采用。本节将主要介绍在松软含水地层中采用手掘式敞胸盾构施工,辅以气压,人工井点降水及其它地层加固措施,盾构开挖掘进时的几种施工方法。第20页/共60页1)人工井点降水加手工掘式敞胸盾构施工人工井点降水,经济,适用于漏气量大的砂性土。地下水位降低、疏干地层,增加土体强度,以保证开挖面稳定,盾构在地下水位以
10、上通过,施工场地较干燥。一般都采用喷射井点,深度曾用到27 m,使埋深为25 m的隧道能顺利开挖。第21页/共60页具体过程:(1)先借助盾构千斤顶使盾构推进,将切口环部分切入地层,然后在切口环保护下进行土体开挖与运输,这样对周围地层扰动较小。(2)分层开挖,施工工具为普通手工工具或手持式风动工具。(3)每环管片可分数次开挖和推进,盾构纠偏时可以利用超挖解决。(4)可借助支撑千斤顶加撑板对开挖面进行临时支撑;(5)当用网格式盾构时,防止盾构后退。第22页/共60页2)气压加手掘式敞胸盾构施工盾构施工在含水松软不稳定地层中采用气压来疏干和支护开挖面,以防止涌水、开挖面崩坍,增强地层强度,是一种极
11、古老,且行之有效的施工方法。(1)气压大小及耗气量的确定理论上,每10m水头必须用0.1Mpa的气压力来平衡。实际上,仅为理论压力的50%60%,空气量仅为理论空气量的10%50%。第23页/共60页中小型盾构,压力等于离盾构上端约D/2处的地下水压力;大直径盾为2/3 D处的地下水压力;顶部均超压,需有足够的覆盖层第24页/共60页施工时为了防止空气泄出,盾构顶部必须有足够厚的覆盖层t即t值过大则直接影响到隧道埋置深度,过小则覆盖不足,往往容易发生喷发事故。国外隧道规范规定;水底隧道的最小覆盖层必须大于盾构直径(日本)或等于盾构直径,覆盖层宽度应大于或等于盾构直径的6倍。n采用经验公式计算耗
12、气量:n 土质系数,当压力大于0.1MPa时,粘性土=3.65;砂性土=7.30。第25页/共60页(2)气压盾构施工气压盾构施工中闸墙和气闸作用是将作业区与常压作业区隔开。闸墙必须有足够的强度与气密性.气闸是钢板铆接或焊接而成的圆筒形结构,分人行闸和外闸两部分。人行闸的管理是气压施工的重要环节,要严格遵守气压作业的工作时间及进出气闸的变压时间,以防减压病。第26页/共60页3)泥水加压盾构施工用泥水加压盾构代替上述气压盾构施工,克服了气压施工的弊病。地面沉降,减压病,覆土深时,气压太高无法施工,覆土浅时,漏气等。泥水加压盾构是将压力为 的泥水,(式中H取2m),压入盾构前部密封舱内,使其压力
13、始终高于地下水压力 ,这样就保持了开挖面稳定的基本条件。第27页/共60页10.3.2 衬砌拼装隧道衬砌是在盾构尾部壳保护下的空间内进行拼装。组成:铸铁、钢、钢筋混凝土或钢与钢筋混凝土的复合材料等制成的管片或砌块。结构受力及使用要求决定盾构及衬砌结构形式并决定其拼装方法。第28页/共60页拼装方法重臂拼装或拱托架拼装;通缝拼装(管片的纵缝环对齐)或错缝拼装;螺栓联结的管片或无螺栓联结的砌块等。按其程序可分为“先纵后环”和“先环后纵”。采用举重臂拼装管片的原则应是自下而上,左右交叉,最后封顶成环。第29页/共60页10.4 装配式圆形衬砌构造“管片”是建成隧道后的永久性支撑结构,应满足强度要求、
14、使用要求;施工阶段须装配简便、容易替换、承受盾构千斤顶顶力及其它施工荷载。箱形管片 第30页/共60页平板形管片 第31页/共60页带肋管片的材料长期以来多为铸铁(见图6-6c)和钢。第32页/共60页环宽与厚度国内外常用的环宽是7501000m;曲线段推进时设有楔形管片,按隧道曲率半径计算;管片厚度一般为250600mm。分块 n大断面隧道可分成6810块,小断面可分为46块。n管片的最大弧长一般不超过4 m,管片愈薄其长度应越短。第33页/共60页拼装型式一般有通缝、错缝拼装两种。纵缝环环对齐的称通缝,适用于需要拆除管片修建旁侧通道或结构需要比较柔的情况下,以便于进行结构处理。纵缝互相错开
15、,对称错缝,其优点在于能加强圆环接缝刚度,使圆形结构可近似地按均质圆环等刚度考虑,因此使用较普遍的,缺点是错缝拼装容易使管片顶碎。第34页/共60页环、纵向螺栓环向螺栓根据接缝内力情况可设置成单排或双排。双排:外排螺栓抵抗负弯矩,内排螺栓抵抗正弯矩。纵向螺栓目的是使隧道衬砌结构具有抵抗隧道纵向变形的能力,一块管片设34个螺栓。螺栓材料一般采用高强度合金钢,直螺栓。10.5 内力计算与管片结构设计n10.5.1 设计原则n隧道衬砌费用占40%50%,安全可靠、经济合理。n本节重点介绍装配式钢筋混凝土管片。第35页/共60页1.满足结构的强度和刚度:土层压力、水压力以及特殊荷载,按梁式模型计算埋在
16、土中圆环的内力和位移,以及管片(如钢筋混凝土管片)的裂缝宽度限制等。覆土最深、顶压与侧压相差最大处:按施工阶段和使用阶段荷载最不利组合情况下计算,同时按使用阶段与特殊荷载阶段组合情况下的管片强度验算。覆土最浅处:断面仅进行使用阶段和特殊荷载阶段组合情况下的管强度验算。不同点n2.满足所提出的安全质量指标要求:裂缝开展宽度,接缝变形和直径变形的允许量,隧道抗渗防漏指标,结构安全度,衬砌内表面平整度要求,满足使用要求的工作环境,保持隧道内部的干燥和洁净。第36页/共60页10.5.2 内力计算法饱和含水地层中,因内擦角值很小,主动与被动土压力几乎是相等,结构变形不能产生很大抗力。假定:结构可以自由
17、变形,不受地层约束,认为圆环只是处在外部荷载及与之平衡的底部地层反力作用下工作.刚度折减 n采用错缝拼装和通缝拼装,接缝处的刚度远远小于断面部分的刚度,与整体式等刚度圆形衬砌差异更大。n日本资料,接头刚度折减速系数,对铸铁管片=0.91.0;钢筋混凝土管片=0.50.7。n总体上,在饱和含水地层中按整体式自由变形匀质圆环的计算方法误差可以接受。第37页/共60页多铰圆环方法 将接缝看作为一个“铰”,整个圆环变成一个多铰圆环。基于:连接方法由刚 性连接向柔性连接过渡。虽属不稳定结构,但因有外围土层提供的附加约束和多铰圆环的变形而提供了相应的地层抗力,促使多铰圆环仍处于稳定状态。特殊情况下:n当土
18、层较好,衬砌变形后能提供相应的地层抗力,则可按有弹性抗力的整体式匀质圆环进行内力计算。n常用的有日本的和苏联的假定抗力法等。第38页/共60页多铰圆环计算图式第39页/共60页10.5.3 荷载计算基本荷载(基本使用阶段)、临时荷载(施工阶段)和特殊荷载。1)基本荷载:(1)土层压力:垂直土压力、水平土压力、(2)水压力:(3)衬砌自重第40页/共60页竖向土压 拱背土压 (104N/m)地面超载 q3=1(104N/m)(日本资料)(当隧道埋深较浅时)n拱背土压第41页/共60页水平荷重:即地层侧向主动土压,由均匀土压p1和三角形土压p2组成:水压力:顶部垂直向下水压力底部垂直向上压力侧向水
19、平水压力 第42页/共60页水压力的叠加第43页/共60页衬砌自重 (104N/m)匀布底部竖向力平均后的拱被压力抵消后的平均水压力平均后的竖向土压力平均后的自重压力第44页/共60页2)施工阶段临时荷载(1)自重引起的临时荷载临时荷载随盾构推进所产生,一般来自千斤顶顶力和壁后注浆压力。圆形隧道衬砌在到达基本使用阶段前,它保留着装配中由其自重作用所产生的受力状态,它与基本阶段所产生的内力之和,不能超过容许值。第45页/共60页由下向上装配的衬砌环,拱顶截面产生内力最大:支承弧面所对应的中心角1米宽衬砌自重衬砌内径第46页/共60页(2)管片拼装及盾构推进引起的临时集中荷载拼装成环时,管片制作精
20、度不高,端面不平,拧紧螺栓时往往使管片局部产生较大的应力,导致管片开裂。或因拼装管片误差累计,当盾构千斤顶施加在环缝面上,特别是偏心作用时,也会使管片顶裂、顶碎。铸铁管片,较薄的外壳厚度加肋逐步变到突缘处,承受约106N的盾构千斤顶顶力。改善的方法是合理选择管片型式,提高钢模制作精度和管片混凝土强度。在拼装管片时提高拼装质量。采用错缝拼装也是较好的办法。第47页/共60页3)特殊荷载阶段特殊荷载是一种瞬时性的,作用时间短的动力荷载,往往是控制衬砌结构设计的关键,在某些地区还要考虑地震力作用。结构动力计算一般可用等静载法,按弹性或弹塑性工作阶段进行,结构内力计算方法与只承受静载的结构相同。并可适
21、当提高材料强度和降低强度安全系数。n管片压浆因局部凝集在一个区域内所造成的圆环变形和集中荷载。n荷载大小难以确定,只能通过采用附加安全系数,以保证衬砌结构的安全度。第48页/共60页10.5.4 衬砌内力计算1)自由变形的匀质圆环计算弹性中心法计算 由于结构及荷载对称,拱顶剪力等于零,属二次超静定结构。力法方程为:第49页/共60页推导过程第50页/共60页圆环中任意截面上的内力可由下式得到:设计时可直接利用这些公式,也可详见表6-3,第51页/共60页2)考虑土层产生侧向弹性抗力的匀质圆环计算当外荷作用在隧道衬砌上,一部分衬砌向地层方向变形,使地层产生弹性抗力。弹性抗力的分布规律很难确定,采
22、用假定弹性抗力分布规律法,如日本的三角形分布,原苏联OE、布加耶娃的月牙形分布(水工隧洞中常常采用),以及二次、三次抛物线分布等方法。第52页/共60页(1)日本按三角形分布弹性抗力的方法按温克列尔局部变形理论,假定土层侧向弹性抗力PK=Ky。n实际变形量 n圆环抗弯刚度 n接头刚度折减系数,取0.250.8。K为地层侧向压缩系数 第53页/共60页(2)前苏联布加耶娃法PK=-Kyacos2PK=Kyasin2+Kybcos2n起始位置第54页/共60页四个未知数x1、x2、ya和yb。各个截面上的M、N值为:Ma=Mq+MPK+x1-x2RhcosNa=Nq+NPK+x2cos第55页/共
23、60页10.5.5 管片截面设计圆环属于偏心受压构件(正、负弯矩、轴向力),它的断面强度、配筋计算与裂缝宽度限制计算,按照钢筋混凝土基本构件计算。接缝计算方面的内容。方法:n常常将半个衬砌环分成九个截面,即八段:分别计算各点的弯矩和轴力。n内力计算通过查工具表格分别计算土层压力、水压力和自重作用下的内力然后叠加。第56页/共60页1)管片纵向接缝计算结构破坏大都开始于薄弱的接缝处。(1)接缝张开的验算接缝处受到外荷后的应力状态 由于拼装螺栓预加应力第57页/共60页上边缘(外边缘)可能受拉、可能受压、也可能不受力,若受拉,则需考量涂料强度及变形能力。(2)接缝强度计算n计算接缝强度时近似地把螺
24、栓看作受拉钢筋,并按钢筋混凝土截面进行计算;n一般先假定螺栓直径、数量和位置,然后计算中和轴x,按偏心受压构件对接缝强度进行验算。第58页/共60页环向螺栓位置,在只设单排螺栓时,其位置大致为管片厚度的1/3处;设双排螺栓时,内外排螺栓的位置离管片同外二侧各不小于100mm。2)管片环缝计算n环缝属空间结构,受力复杂,较难计算,故常按构造要求设置。n纵向螺栓的选择要确保环间联接良好,并能将邻环纵向接缝上的部分内力传到对应的衬砌断面上,使衬砌圆环能达一匀质刚度的要求。n在纵向发生较大变形,管片环缝构造设计和计算就是要满足隧道在纵向具有足够的抗弯强度。第59页/共60页感谢您的观看!第60页/共60页