《数学模型姜启源马氏链模型.pptx》由会员分享,可在线阅读,更多相关《数学模型姜启源马氏链模型.pptx(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、马氏链模型马氏链模型 系统在每个时期所处的状态是随机的 从一时期到下时期的状态按一定概率转移 下时期状态只取决于本时期状态和转移概率 已知现在,将来与过去无关(无后效性)描述一类重要的随机动态系统(过程)的模型马氏链马氏链(Markov Chain)时间、状态均为离散的随机转移过程时间、状态均为离散的随机转移过程第1页/共38页通过有实际背景的例子介绍马氏链的基本概念和性质例1.人的健康状况分为健康和疾病两种状态,设对特定年龄段的人,今年健康、明年保持健康状态的概率为0.8,而今年患病、明年转为健康状态的概率为0.7,11.1 健康与疾病健康与疾病 人的健康状态随着时间的推移会随机地发生转变
2、保险公司要对投保人未来的健康状态作出估计,以制订保险金和理赔金的数额 若某人投保时健康,问10年后他仍处于健康状态的概率第2页/共38页Xn+1只取决于Xn和pij,与Xn-1,无关状态状态与与状态转移状态转移状态转移具有无后效性 120.80.20.30.7第3页/共38页 n 0a2(n)0 a1(n)1设投保时健康给定a(0),预测 a(n),n=1,2设投保时疾病a2(n)1 a1(n)0 n时状态概率趋于稳定值,稳定值与初始状态无关3 0.778 0.222 7/9 2/9 0.7 0.77 0.777 0.3 0.33 0.333 7/9 2/9 状态状态与与状态转移状态转移120
3、.80.20.30.710.80.220.780.22第4页/共38页1230.10.0210.80.250.180.65例2.健康和疾病状态同上,Xn=1 健康,Xn=2 疾病p11=0.8,p12=0.18,p13=0.02 死亡为第3种状态,记Xn=3健康与疾病健康与疾病 p21=0.65,p22=0.25,p23=0.1 p31=0,p32=0,p33=1 第5页/共38页n 0 1 2 3 a2(n)0 0.18 0.189 0.1835 a3(n)0 0.02 0.054 0.0880 a1(n)1 0.8 0.757 0.7285 设投保时处于健康状态,预测 a(n),n=1,2
4、 不论初始状态如何,最终都要转到状态3;一旦a1(k)=a2(k)=0,a3(k)=1,则对于nk,a1(n)=0,a2(n)=0,a3(n)=1,即从状态3不会转移到其它状态。状态状态与与状态转移状态转移001 50 0.1293 0.0326 0.8381 第6页/共38页马氏链的基本方程马氏链的基本方程基本方程第7页/共38页马氏链的两个重要类型马氏链的两个重要类型 1.正则链 从任一状态出发经有限次转移能以正概率到达另外任一状态(如例1)。w 稳态概率第8页/共38页马氏链的两个重要类型马氏链的两个重要类型 2.吸收链 存在吸收状态(一旦到达就不会离开的状态i,pii=1),且从任一非
5、吸收状态出发经有限次转移能以正概率到达吸收状态(如例2)。有r个吸收状态的吸收链的转移概率阵标准形式R有非零元素yi 从第 i 个非吸收状态出发,被某个吸收状态吸收前的平均转移次数。第9页/共38页11.2 钢琴销售的存贮策钢琴销售的存贮策略略 钢琴销售量很小,商店的库存量不大以免积压资金 一家商店根据经验估计,平均每周的钢琴需求为1架存贮策略:每周末检查库存量,仅当库存量为零时,才订购3架供下周销售;否则,不订购。估计在这种策略下失去销售机会的可能性有多大,以及每周的平均销售量是多少。背景与问题背景与问题第10页/共38页问题分析问题分析 顾客的到来相互独立,需求量近似服从波松分布,其参数由
6、需求均值为每周1架确定,由此计算需求概率 存贮策略是周末库存量为零时订购3架 周末的库存量可能是0,1,2,3,周初的库存量可能是1,2,3。用马氏链描述不同需求导致的周初库存状态的变化。动态过程中每周销售量不同,失去销售机会(需求超过库存)的概率不同。可按稳态情况(时间充分长以后)计算失去销售机会的概率和每周的平均销售量。第11页/共38页模型假设模型假设 钢琴每周需求量服从波松分布,均值为每周1架 存贮策略:当周末库存量为零时,订购3架,周初到货;否则,不订购。以每周初的库存量作为状态变量,状态转移具有无后效性。在稳态情况下计算该存贮策略失去销售机会的概率,和每周的平均销售量。第12页/共
7、38页模型建立模型建立 Dn第n周需求量,均值为1的波松分布 Sn第n周初库存量(状态变量)状态转移规律 Dn 0 1 2 3 3P 0.368 0.368 0.184 0.061 0.019状态转移阵 第13页/共38页模型建立模型建立 状态概率 马氏链的基本方程正则链 稳态概率分布 w 满足 wP=w已知初始状态,可预测第n周初库存量Sn=i 的概率n,状态概率 第14页/共38页第n周失去销售机会的概率 n充分大时 模型求解模型求解 从长期看,失去销售机会的可能性大约 10%。1.估计在这种策略下失去销售机会的可能性D 0 1 2 3 3P 0.368 0.368 0.184 0.061
8、 0.019第15页/共38页模型求解模型求解 第n周平均售量从长期看,每周的平均销售量为 0.857(架)n充分大时 需求不超过存量,销售需求需求超过存量,销售存量 思考:为什么这个数值略小于每周平均需求量1(架)?2.估计这种策略下每周的平均销售量第16页/共38页敏感性分析敏感性分析 当平均需求在每周1(架)附近波动时,最终结果有多大变化。设Dn服从均值为 的波松分布 状态转移阵 0.80.91.01.11.2P0.0730.0890.1050.1220.139第n周(n充分大)失去销售机会的概率 当平均需求增长(或减少)10%时,失去销售机会的概率将增长(或减少)约12%。第17页/共
9、38页11.3 基因遗传基因遗传背景背景 生物的外部表征由内部相应的基因决定。基因分优势基因d 和劣势基因r 两种。每种外部表征由两个基因决定,每个基因可以是d,r 中的任一个。形成3种基因类型:dd 优种D,dr 混种H,rr 劣种R。基因类型为优种和混种,外部表征呈优势;基因类型为劣种,外部表征呈劣势。生物繁殖时后代随机地(等概率地)继承父、母的各一个基因,形成它的两个基因。父母的基因类型决定后代基因类型的概率完全完全优势优势基因基因遗传遗传第18页/共38页父母基因类型决定后代各种基因类型的概率父母基因类型组合后代各种基因类型 的概率DDRRDHDRHHHRDRH1000011/21/2
10、00101/41/21/401/21/23种基因类型:dd优种D,dr混种H,rr劣种R完全优势基因遗传完全优势基因遗传P(D DH)=P(dd dd,dr)=P(d dd)P(d dr)P(R HH)=P(rr dr,dr)=P(r dr)P(r dr)=1 1/2=1/2=1/2 1/2=1/4第19页/共38页随机繁殖随机繁殖 设群体中雄性、雌性的比例相等,基因类型的分布相同(记作D:H:R)每一雄性个体以D:H:R的概率与一雌性个体交配,其后代随机地继承它们的各一个基因 设初始一代基因类型比例D:H:R=a:2b:c (a+2b+c=1),记p=a+b,q=b+c,则群体中优势基因和劣
11、势基因比例 d:r=p:q(p+q=1)。假设假设建模建模状态Xn=1,2,3 第n代的一个体属于D,H,R状态概率 ai(n)第n代的一个体属于状态i(=1,2,3)的概率。讨论基因类型的演变情况第20页/共38页基因比例 d:r=p:q转移概率矩阵状态转移概率随机繁殖随机繁殖第21页/共38页马氏链模型马氏链模型自然界中通常p=q=1/2稳态分布D:H:R=1/4:1/2:1/4基因类型为D和H,优势表征绿色,基因类型为R,劣势表征黄色。解释“豆科植物的茎,绿色:黄色=3:1”(D+H):R=3:1随机繁殖随机繁殖第22页/共38页近亲近亲繁殖繁殖在一对父母的大量后代中,雄雌随机配对繁殖,
12、讨论一系列后代的基因类型的演变过程。状态定义为配对的基因类型组合Xn=1,2,3,4,5,6配对基因组合为DD,RR,DH,DR,HH,HR状态转移概率马氏链模型第23页/共38页I0RQ状态1(DD),2(RR)是吸收态,马氏链是吸收链不论初始如何,经若干代近亲繁殖,将全变为优种或劣种.计算从任一非吸收态出发,平均经过几代被吸收态吸收。纯种(优种和劣种)的某些品质不如混种,近亲繁殖下大约56代就需重新选种.近亲繁殖近亲繁殖第24页/共38页11.4 等级结等级结构构社会系统中的等级结构,适当、稳定结构的意义描述等级结构的演变过程,预测未来的结构;确定为达到某个理想结构应采取的策略。引起等级结
13、构变化的因素:系统内部等级间的转移:提升和降级;系统内外的交流:调入和退出(退休、调离等).用马氏链模型描述确定性转移问题 转移比例视为概率第25页/共38页基本模型基本模型a(t)等级结构等级 i=1,2,k(如助教、讲师、教授)数量分布 n(t)=(n1(t),n2(t),nk(t)ni(t)t 年属于等级i 的人数,t=0,1,比例分布 a(t)=(a1(t),a2(t),ak(t)转移矩阵 Q=pijk k,pij 是每年从i 转至j 的比例第26页/共38页基本模型基本模型第27页/共38页基本模型基本模型 基本模型 第28页/共38页基本模型基本模型等级结构a(t)状态概率P转移概
14、率矩阵第29页/共38页用调入比例进行稳定控制用调入比例进行稳定控制问题:给定Q,哪些等级结构可以用合适的调入比例保持不变a为稳定结构第30页/共38页用调入比例进行稳定控制用调入比例进行稳定控制求稳定结构 a=(a1,a2,a3)(a1+a2+a3=1)(0.5,0.5,0)a2=a1a3=1.5a2(0,0.4,0.6)a*稳定域BB(0,0,1)(0,1,0)(1,0,0)A可行域A例 大学教师(助教、讲师、教授)等级 i=1,2,3,已知每年转移比例第31页/共38页用调入比例进行稳定控制用调入比例进行稳定控制研究稳定域B的结构寻求a aQ 的另一种形式第32页/共38页用调入比例进行
15、稳定控制用调入比例进行稳定控制稳定域是k维空间中以 si 为顶点的凸多面体研究稳定域B的结构第33页/共38页用调入比例进行稳定控制用调入比例进行稳定控制例(0,1,0)(1,0,0)(0,0,1)0.2860.286S1S2S3B稳定域B是以si为顶点的三角形第34页/共38页用调入比例进行用调入比例进行动态动态调节调节问题:给定Q和初始结构 a(0),求一系列的调入比例 r,使尽快达到或接近理想结构逐步法:对于Q和 a(0),求 r使 a(1)尽量接近 a*,再将 a(1)作为新的a(0),继续下去。模型第35页/共38页例(0,1,0)(1,0,0)(0,0,1)a(0)0.2860.2
16、86a*a(1)用调入比例进行用调入比例进行动态动态调节调节求r 使a(1)尽量接近a*第36页/共38页7423560.6390.36100.1650.1650.6700.7470.25300.2070.2070.5860.8270.17300.2350.2350.5310.8830.11700.2530.2530.4950.9220.07800.2640.2640.4720.9490.05100.2720.2720.457r(t),a(t)的计算结果a(7)已接近a*观察r(t)的特点用调入比例进行用调入比例进行动态动态调节调节10.50.500.10.10.8r(t)a(t)t第37页/共38页谢谢您的观看!第38页/共38页