《2022年小学数学工程问题及答案.docx》由会员分享,可在线阅读,更多相关《2022年小学数学工程问题及答案.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 学习必备 欢迎下载工程问题工程问题基本数量关系式:(1)一般公式:工作效率 工作时间工作总量工作总量 工作效率工作时间工作总量工作时间工作效率(2)用假设工作总量为“1” 的方法解工程问题的公式:1 工作时间 =单位时间内完成工作总量的几分之几;一般给出工作时间, 就可以知道工作效率为 1 , 工作时间1 单位时间能完成的几分之几 =工作时间; 假如可以给出工作效率是 1 ,就 a 可以知道工作时间为 a. 一、两个人的问题标题上说的 “两个人 ”,也可以是两个组、两个队等等的两个集体 . 例 1 一件工作,甲做 9 天可以完成,乙做 6 天可
2、以完成 .现在甲先做了 3 天,余下的工作由 乙连续完成 .乙需要做几天可以完成全部工作?. 例 2 一件工作,甲、乙两人合作30 天可以完成,共同做了6 天后,甲离开了,由乙连续做了 40 天才完成 .假如这件工作由甲或乙单独完成各需要多少天?. 例 3 某工程先由甲独做63 天,再由乙单独做28 天即可完成;假如由甲、乙两人合作,需48 天完成 .现在甲先单独做 . 42 天,然后再由乙来单独完成,那么乙仍需要做多少天?名师归纳总结 例 4 一件工程,甲队单独做10 天完成,乙队单独做30 天完成 .现在两队合作,其间甲队休第 1 页,共 10 页息了 2 天,乙队休息了8 天(不存在两队
3、同一天休息).问开头到完工共用了多少天时间?- - - - - - -精选学习资料 - - - - - - - - - 例 5 一项工程,甲队单独做学习必备欢迎下载20 天完成,乙队单独做30 天完成 .现在他们两队一起做,其间甲队休息了 3 天,乙队休息了如干天 .从开头到完成共用了 16 天.问乙队休息了多少天?例 6 有甲、乙两项工作,张单独完成甲工作要 10 天,单独完成乙工作要 15 天;李单独完成甲工作要8 天,单独完成乙工作要20 天.假如每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?. 例 7 一项工程,甲独做需10 天,乙独做需15 天,假如两人合作,他要 8
4、 天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?例 8 甲、乙合作一件工作,由于协作得好,甲的工作效率比单独做时快假如这件工作始终由甲一人单独来做,需要多少小时?二、多人的工程问题我们说的多人,至少有 3 个人,当然多人问题要比 2 人问题复杂一些,但是解题的基本思路仍是差不多 . 例 9 一件工作,甲、乙两人合作 36 天完成,乙、丙两人合作 45 天完成,甲、丙两人合作要 60 天完成 .问甲一人独做需要多少天完成?例 10 一件工作, 甲独做要 12 天,乙独做要 18 天,丙独做要 24 天.这件工作由甲先做了如干天,然后由乙接着做,乙做的天数是甲做的天数的3 倍,再由丙
5、接着做,丙做的天数是乙做的天数的2 倍,最终做完了这件工作.问总共用了多少天?2 天,乙就要多做4 天,例 11 一项工程,甲、乙、丙三人合作需要13 天完成 .假如丙休息名师归纳总结 或者由甲、乙两人合作1 天.问这项工程由甲独做需要多少天?第 2 页,共 10 页- - - - - - -精选学习资料 - - - - - - - - - 例 12 某项工作,甲组学习必备欢迎下载.问甲组 2 人和乙3 人 8 天能完成工作,乙组4 人 7 天也能完成工作组 7 人合作多少时间能完成这项工作?例 13 制作一批零件, 甲车间要 10 天完成, 假如甲车间与乙车间一起做只要 6 天就能完成 .乙
6、车间与丙车间一起做,需要8 天才能完成 .现在三个车间一起做,完成后发觉甲车间比乙车间多制作零件 2400 个 .问丙车间制作了多少个零件?. 例 14 搬运一个仓库的货物,甲需要 10 小时, 乙需要 12 小时, 丙需要 15 小时 .有同样的仓库 A 和 B,甲在 A 仓库、乙在 B 仓库同时开头搬运货物,丙开头帮忙甲搬运,中途又转向帮忙乙搬运 .最终两个仓库货物同时搬完三、 水管问题.问丙帮忙甲、乙各多少时间?从数学的内容来看,水管问题与工程问题是一样的 .水池的注水或排水相当于一项工程,注水量或排水量就是工作量 .单位时间里的注水量或排水量就是工作效率 .至于又有注入又有排出的问题,
7、不过是工作量有加有减罢了 同. .因此,水管问题与工程问题的解题思路基本相例 15 甲、乙两管同时打开,9 分钟能注满水池 .现在,先打开甲管,10 分钟后打开乙管,经过 3 分钟就注满了水池 .已知甲管比乙管每分钟多注入 0.6 立方米水,这个水池的容积是多少立方米?例 16 有一些水管,它们每分钟注水量都相等.现在打开其中如干根水管,经过预定的时间的 1/3,再把打开的水管增加一倍,就能按预定时间注满水池,假如开头时就打开 10 根水管,中途不增开水管,也能按预定时间注满水池.问开头时打开了几根水管?名师归纳总结 - - - - - - -第 3 页,共 10 页精选学习资料 - - -
8、- - - - - - 学习必备 欢迎下载例 17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管 .要灌满一池水,单开甲管需 3 小时,单开丙管需要 5 小时 .要排光一池水,单开乙管需要 4 小,丁管需要 6 小时,现在水池内有六分之一的水,如按甲、乙、丙、丁、甲、乙 的次序轮番打开 1 小时,问多少时间后水开头溢出水池?例 18 一个蓄水池,每分钟流入4 立方米水 .假如打开5 个水龙头, 2 小时半就把水池水放空,假如打开8 个水龙头, 1 小时半就把水池水放空.现在打开 13 个水龙头,问要多少时间才能把水放空?例 19 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开 A
9、 管, 8 小时可将满池水排空,打开C 管, 12 小时可将满池水排空.假如打开 A,B 两管, 4 小时可将水排空.问打开 B,C 两管,要几小时才能将满池水排空? . 例 20 有三片牧场,场上草长得一样密,而且长得一草;21 头牛 9 星期吃完其次片牧场的草 .问多少头牛 18 星期才能吃完第三片牧场的草?“牛吃草 ”这一类型问题可以以各种各样的面目显现 .限于篇幅,我们只再举一个例子 . 例 21 画展 9 点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多 .假如开 3 个入场口, 9 点 9 分就不再有人排队,假如开 5 个入场口, 9 点 5 分就没有人
10、排队 .问第一个观众到达时间是 8 点几分?例 22 .一件工作,假如甲单独做,那么甲按规定时间可提前2 天完成,乙就要超过规定时间3 天才完成;现在甲乙二人合作二天后,剩下的乙单独做,刚好在规定日期内完成;如甲乙 二人合作,完成工作需多长时间?名师归纳总结 - - - - - - -第 4 页,共 10 页精选学习资料 - - - - - - - - - 例 1 答:乙需要做学习必备. 欢迎下载4 天可完成全部工作解二: 9 与 6 的最小公倍数是18.设全部工作量是18 份.甲每天完成2 份,乙每天完成3 份.乙完成余下工作所需时间是(18- 2 3 ) 3= 4 (天) . 解三:甲与乙
11、的工作效率之比是 6 9= 2 3. 甲做了 3 天,相当于乙做了 2 天.乙完成余下工作所需时间是 6-2=4 (天)6 天后,例 2 解:共做了 原先,甲做 24 天,乙做 24 天,现在,甲做 0 天,乙做 40= ( 24+16 )天 . 16 天来代替 .因此甲的工作效率 这说明原先甲 24 天做的工作,可由乙做 假如乙独做,所需时间是 假如甲独做,所需时间是答:甲或乙独做所需时间分别是 75 天和 50 天 例 3 解:先对比如下:甲做 63 天,乙做 28 天;甲做 48 天,乙做 48 天. 就知道甲少做 63-48=15 (天),乙要多做 48-28=20 (天),由此得出甲
12、的 甲先单独做 42 天,比 63 天少做了 63-42=21 (天),相当于乙要做 因此,乙仍要做 28+28= 56 (天) . 答:乙仍需要做 56 天 8 天,乙队单独做 2 天,共完成工作量 例 4 解一:甲队单独做 余下的工作量是两队共同合作的,需要的天数是 2+8+ 1= 11 (天) . 答:从开头到完工共用了11 天. 3 份,乙每天完成1 份.在甲队单独做8 天,解二:设全部工作量为30 份.甲每天完成乙队单独做2 天之后,仍需两队合作(30- 3 8- 1 2)(3+1 )= 1 (天) . 解三:甲队做1 天相当于乙队做3 天. 10-8= 2 (天)工作量 .相当于乙
13、队要做2 3=6在甲队单独做8 天后,仍余下(甲队)(天) .乙队单独做2 天后,仍余下(乙队)6-2=4 (天)工作量 . 4=3+1 ,其中 3 天可由甲队 1 天完成,因此两队只需再合作 1 天. 例 5 解一:假如 16 天两队都不休息,可以完成的工作量是 由于两队休息期间未做的工作量是 乙队休息期间未做的工作量是 乙队休息的天数是答:乙队休息了5 天半 . 3 份,乙每天完成2 份. 解二:设全部工作量为60 份.甲每天完成两队休息期间未做的工作量是(3+2 ) 16- 60= 20 (份) . 因此乙休息天数是名师归纳总结 - - - - - - -第 5 页,共 10 页精选学习
14、资料 - - - - - - - - - 学习必备 欢迎下载(20- 3 3 ) 2= 5.5 (天) . 解三:甲队做 2 天,相当于乙队做 3 天. 甲队休息 3 天,相当于乙队休息 4.5 天. 假如甲队 16 天都不休息,只余下甲队 4 天工作量,相当于乙队 6 天工作量,乙休息天数是16-6-4.5=5.5 (天) . 例 6 解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高 .因此让李先做甲,张先做乙 . 设乙的工作量为 60 份( 15 与 20 的最小公倍数) ,张每天完成 4 份,李每天完成 3 份. 8 天,李就能完成甲工作 .此时张仍余下乙工作(60-4 8)份
15、 .由张、李合作需要(60-4 8)(4+3 )=4 (天) . 8+4=12 (天) . 答:这两项工作都完成最少需要12 天解: 设这项工程的工作量为30 份,甲每天完成3份,乙每天完成2 份. 两人合作,共完成3 0.8 + 2 0.9= 4.2 (份) . .由于要在8 天内完成,由于两人合作天数要尽可能少,独做的应是工作效率较高的甲所以两人合作的天数是(30-3 8)(4.2-3 )=5(天) . 很明显,最终转化成“鸡兔同笼 ”型问题 .解:乙 6 小时单独工作完成的工作量是乙每小时完成的工作量是两人合作 6 小时,甲完成的工作量是甲单独做时每小时完成的工作量甲单独做这件工作需要的
16、时间是答:甲单独完成这件工作需要 33 小时 . 这一节的多数例题都进行了“整数化 ”的处理 .但是, “整数化 ”并不能使全部工程问题的计算简便 .例 8 就是如此 .例 8 也可以整数化,当求出乙每 有一点便利,但好处不大 .不必多此一举 . 解:设这件工作的工作量是 1. 甲、乙、丙三人合作每天完成 减去乙、丙两人每天完成的工作量,甲每天完成答:甲一人独做需要90 天完成 .180 份,甲、乙合作每天完成5 份,乙、丙合作每天例 9 也可以整数化,设全部工作量为完成 4 份,甲、丙合作每天完成3 份.请试一试,运算是否会便利些?解:甲做 1 天,乙就做 3 天,丙就做 3 2=6 (天)
17、 . 说明甲做了 2 天,乙做了 2 3=6 (天),丙做 2 6=12 天),三人一共做了2+6+12=20 (天) . 名师归纳总结 答:完成这项工作用了20 天. 第 6 页,共 10 页此题整数化会带来运算上的便利.12,18 ,24 这三数有一个易求出的最小公倍数72. 可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了解:丙 2 天的工作量,相当乙4 天的工作量 .丙的工作效率是乙的工作效率的4 2=2 (倍),甲、乙合作1 天,与乙做4 天一样 .也就是甲做1 天,相当于乙做3 天,甲的工作效率是乙的工作效率的3 倍 . - - - - - - -精选学习资
18、料 - - - - - - - - - 学习必备 欢迎下载他们共同做 13 天的工作量,由甲单独完成,甲需要答:甲独做需要 26 天. 事实上,当我们算出甲、乙、丙三人工作效率之比是 321,就知甲做 1 天,相当于乙、丙合作 1 天.三人合作需 13 天,其中乙、丙两人完成的工作量,可转化为甲再做 13 天来完成 . 解一:设这项工作的工作量是 1. 甲组每人每天能完成乙组每人每天能完成甲组 2 人和乙组 7 人每天能完成答:合作 3 天能完成这项工作. 2 人 12 天能完成;乙组4 人 7 天能完成,因此7 人解二:甲组 3 人 8 天能完成,因此4 天能完成 . 现在已不需顾及人数,问
19、题转化为:甲组独做 12 天,乙组独做 4 天,问合作几天完成?学校算术要充分利用给出数据的特别性 .解二是比例敏捷运用的典型,假如你心算较好,很快就能得出答数 . 解一:仍设总工作量为 1. 甲每天比乙多完成因此这批零件的总数是丙车间制作的零件数目是答:丙车间制作了4200 个零件 . 30 份.甲每天完成3 份,甲、解二: 10 与 6 最小公倍数是30. 设制作零件全部工作量为乙一起每天完成5 份,由此得出乙每天完成2 份. 乙、丙一起, 8 天完成 .乙完成 8 2=16 (份),丙完成 30-16=14 (份),就知乙、丙工作效率之比是 16 14=8 7. 已知甲、乙工作效率之比是
20、 32= 12 8. 综合一起,甲、乙、丙三人工作效率之比是12 87. 当三个车间一起做时,丙制作的零件个数是2400 (12- 8 ) 7= 4200 (个)解:设搬运一个仓库的货物的工作量是 1.现在相当于三人共同完成工作量 2,所需时间是答:丙帮忙甲搬运 3 小时,帮忙乙搬运 5 小时 . 解此题的关键,是先算出三人共同搬运两个仓库的时间.此题运算当然也可以整数化,设搬运一个仓库全部工作量为60.甲每小时搬运6,乙每小时搬运5,丙每小时搬运4. 三人共同搬完,需要 60 2 (6+ 5+ 4 )= 8 (小时) . 甲需丙帮忙搬运(60- 6 8) 4= 3 (小时) . 乙需丙帮忙搬
21、运(60- 5 8)4= 5 (小时) . 名师归纳总结 - - - - - - -第 7 页,共 10 页精选学习资料 - - - - - - - - - 解:甲每分钟注入水量是学习必备欢迎下载:(1-1/9 3)10=1/15 乙每分钟注入水量是:1/9-1/15=2/45 因此水池容积是:0.6 (1/15-2/45 )=27 (立方米)答:水池容积是 27 立方米 .分析:增开水管后,有原先 2 倍的水管,注水时间是预定时间的 1-1/3=2/3 ,2/3 是 1/3 的 2倍,因此增开水管后的这段时间的注水量,是前一段时间注水量的 4 倍; 设水池容量是 1,前后两段时间的注水量之比
22、为:1:4,那么预定时间的 1/3(即前一段时间)的注水量是 1/(1+4 )=1/5 ;10 根水管同时打开, 能按预定时间注满水, 每根水管的注水量是 1/10 ,预定时间的 1/3 ,每根水官的注水量是 1/10 1/3=1/30 要注满水池的 1/5,需要水管 1/5 1/30=6 (根)解:前后两段时间的注水量之比为:1:(1-1/3 )1/3 2=1 :4 前段时间注水量是:1(1+4 )=1/5 每根水管在预定 1/3 的时间注水量为:110 1/3=1/30 开头时打开水管根数:1/5 1/30=6 (根)答:开头时打开 6 根水管;分析:,否就开甲管的过程中水池里的水就会溢出
23、 . 以后( 20 小时),池中的水已有此题与广为流传的“青蛙爬井 ”是相仿的:一只掉进了枯井的青蛙,它要往上爬 30 尺才能到达井口,每小时它总是爬 3 尺,又滑下 2 尺.问这只青蛙需要多少小时才能爬到井口?看起来它每小时只往上爬 3- 2= 1 (尺),但爬了 27 小时后,它再爬 1 小时,往上爬了3 尺已到达井口 . 因此,答案是 28 小时,而不是 30 小时 .解:先运算 1 个水龙头每分钟放出水量 . 2 小时半比 1 小时半多 60 分钟,多流入水4 60= 240 (立方米) . 时间都用分钟作单位,1 个水龙头每分钟放水量是240 ( 5 150- 8 90)= 8 (立
24、方米),8 个水龙头 1 个半小时放出的水量是8 8 90 ,其中 90 分钟内流入水量是4 90 ,因此原先水池中存有水8 8 90-4 90= 5400(立方米) . 打开 13 个水龙头每分钟可以放出水8 13 ,除去每分钟流入4,其余将放出原存的水,放空原存的5400 ,需要5400 (8 13- 4 )=54 (分钟) . 答:打开 13 个龙头,放空水池要 54 分钟 . 水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解此题的关键是先求出池中原存有的水.这在题目中却是隐含着的.解:设满水池的水量为1. A 管每小时排出A 管 4 小时排出因此, B,C 两管齐开,每小
25、时排水量是B,C 两管齐开,排光满水池的水,所需时间是名师归纳总结 答: B, C 两管齐开要4 小时 48 分才将满池水排完. 第 8 页,共 10 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载此题也要分开考虑,水池原有水(满池)和渗入水量.由于不知详细数量,像工程问题不知工作量的详细数量一样 .这里把两种水量分别设成“ 1” . 但这两种量要防止混淆 .事实上,也可以整数化,把原有水设为 8 与 12 的最小公倍数 24.解:吃草总量 =一头牛每星期吃草量 牛头数 星期数 .依据这一运算公式,可以设定“一头牛每星期吃草量 ”作为草的计量单
26、位 . 原有草 +4 星期新长的草 =12 4. 原有草 +9 星期新长的草 =7 9. 由此可得出,每星期新长的草是(7 9-12 4)( 9-4)=3. 那么原有草是7 9-3 9=36 (或者 12 4-3 4) . 对第三片牧场来说,原有草和 18 星期新长出草的总量是这些草能让90 7.2 18=36 (头)牛吃 18 个星期 . 答: 36 头牛 18 个星期能吃完第三片牧场的草 .例 20 与例 19 的解法稍有一点不一样.例 20 把“新长的 ”详细地求出来, 把“原有的 ”与“新长的 ”两种量统一起来运算 .事实上,假如例 19 再有一个条件,例如:“打开 B 管, 10 小
27、时可以将 满池水排空 . ”也就可以求出 “新长的 ”与“原有的 ”之间数量关系 .但仅仅是例 19 所求,是不需要 加这一条件 .好好想一想,你能明白其中的道理吗?解:设一个入场口每分钟能进入的观众为 1 个运算单位 . 从 9 点至 9 点 9 分进入观众是 39,从 9 点至 9 点 5 分进入观众是 55. 由于观众多来了 9-5=4 (分钟),所以每分钟来的观众是(3 9-5 5)(9-5 )=0.5. 9 点前来的观众是 5 5-0.5 5=22.5. 这些观众来到需要 22.5 0.5=45 (分钟) . 答:第一个观众到达时间是 8 点 15 分. 挖一条水渠,甲、乙两队合挖要
28、六天完成;甲队先挖三天,乙队接着挖一天,可挖这条 水渠的 3/10 ,两队单独挖各需几天?分析 : 甲乙合作 1 天后 ,甲又做了 2 天共 3/10-1/6=4/30 2 3/10-1/6 =2 4/30 =15 天 1 1/6-1/15=10 天 答:甲单独做要15 天,乙单独做要10 天 .2 天,乙一共做了X 天 解设 :规定时间为X 天.甲单独要 X-2 天,乙单独要 X+3 天,甲一共做了1/X-2 2 + X/X+3=1 X=12 规定要 12 天完成 1 1/12-2+1/12+3 名师归纳总结 - - - - - - -第 9 页,共 10 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载=1 1/6 =6 天答:两人合作完成要6 天 . 例:一项工程,甲单独做63 天,再由乙做28 天完成,甲乙合作需要 48 天完成;甲先做42 天,乙做仍要几天?答:设甲的工效为x,乙的工效为y 63x+28y=1 48x+48y=1 x=1/84 y=1/112 乙仍要做( 1-42/84 )(1/112 )=56 (天)名师归纳总结 - - - - - - -第 10 页,共 10 页