协方差矩阵和相关矩阵1960.pdf

上传人:得** 文档编号:79845881 上传时间:2023-03-21 格式:PDF 页数:4 大小:570.23KB
返回 下载 相关 举报
协方差矩阵和相关矩阵1960.pdf_第1页
第1页 / 共4页
协方差矩阵和相关矩阵1960.pdf_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《协方差矩阵和相关矩阵1960.pdf》由会员分享,可在线阅读,更多相关《协方差矩阵和相关矩阵1960.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 协方差矩阵和相关矩阵 The manuscript was revised on the evening of 2021 一、协方差矩阵 变量说明:设为一组随机变量,这些随机变量构成随机向量,每个随机变量有 m 个样本,则有样本矩阵 1112121212.mmnnnmxxxxxMxxx 其中 对应着每个随机向量 X 的样本向量,对应着第 i 个随机单变量的所有样本值构成的向量。单随机变量间的协方差:随机变量之间的协方差可以表示为 根据已知的样本值可以得到协方差的估计值如下:可以进一步地简化为:协方差矩阵:?(5)其中,从而得到了协方差矩阵表达式。如果所有样本的均值为一个零向量,则式(5)可以

2、表达成:补充说明:1、协方差矩阵中的每一个元素是表示的随机向量 X 的不同分量之间的协方差,而不是不同样本之间的协方差,如元素 Cij就是反映的随机变量 Xi,Xj的协方差。2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所

3、测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。5、协方差作为描述 X和 Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。由此引入相关系数。(,)()()xyCOV x yD xD y 二、相关矩阵(相关系数矩阵)相关系数:着名统计学家卡尔皮尔逊设计了统计指标相关系数。相关系数是用以反

4、映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。相关系数用 r 表示,它的基本公式(formula)为:相关系数的值介于1 与+1 之间,即1r+1。其性质如下:当 r0 时,表示两变量正相关,r0 时,两变

5、量为负相关。当|r|=1 时,表示两变量为完全线性相关,即为函数关系。当 r=0 时,表示两变量间无线性相关关系。当 0|r|1 时,表示两变量存在一定程度的线性相关。且|r|越接近 1,两变量间线性关系越密切;|r|越接近于 0,表示两变量的线性相关越弱。一般可按三级划分:|r|为低度线性相关;|r|为显着性相关;|r|1为高度线性相关。相关矩阵也叫相关系数矩阵,是由矩阵各列间的相关系数构成的。也就是说,相关矩阵第 i 行第 j 列的元素是原矩阵第 i 列和第 j 列的相关系数。3、协方差矩阵和相关矩阵的关系 由二者的定义公式可知,经标准化的样本数据的协方差矩阵就是原始样本数据的相关矩阵。这里所说的标准化指正态化,即将原始数据处理成均值为 0,方差为 1 的标准数据。即:X=(X-EX)/DX

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁