《陕西省西安市长安区2021-2022学年八年级上学期期中考试数学试卷(含答案)42581.pdf》由会员分享,可在线阅读,更多相关《陕西省西安市长安区2021-2022学年八年级上学期期中考试数学试卷(含答案)42581.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021-2022 学年陕西省西安市长安区八年级(上)期中数学试卷 一、选择题(每小题 3 分,共 30 分)1(3 分)下列实数中,为无理数的是()A B C5 D 2(3 分)下列计算正确的是()A2 B+C2 D3 3(3 分)下列函数中,是一次函数的是()Ay By2x+1 Cy3(x2)3x Dyx+x2 4(3 分)直角三角形三边的长分别为 3、4、x,则 x 可能取的值为()A5 B6 或 C5 或 D 5(3 分)下列根式中,可以与合并的是()A B C D 6(3 分)已知正比例函数 ykx,当 x2 时,y6,则下列各点在该函数图象上的是()A(1,2)B(1,3)C(1,
2、3)D(3,1)7(3 分)如图,数轴上点 A 对应的数是 0,点 B 对应的数是 1,BCAB,垂足为 B,且BC2,以 A 为圆心,AC 为半径画弧,交数轴于点 D,则点 D 表示的数为()A2.2 B C D 8(3 分)平面直角坐标系中,点 A(5,6),B(3,4),经过点 A 的直线 a 与 x 轴平行,如果点C 是直线a 上的一个动点,那么当线段 BC的长度最短时,点 C的坐标为()A(6,3)B(4,5)C(3,6)D(5,4)9(3 分)如图,小方格都是边长为 1 的正方形,则ABC 中 BC 边上的高等于()A2 B C2 D 10(3 分)一根竹子高一丈,折断后竹子顶端落
3、在离竹子底端 6 尺处,折断处离地面的高度是多少?(这是我国古代九章算术中的“折竹抵地问题其中的丈、尺是长度单位,一丈10 尺)设折断处离地面的高度为 x 尺,则可列方程为()Ax2+62(10 x)2 Bx262(10 x)2 Cx2+6(10 x)2 Dx26(10 x)2 二、填空题(每小题 3 分,共 24 分)11(3 分)计算:12(3 分)写一个大于 1 且小于 3 的无理数:13(3 分)一次函数 y2x+1 过点(a,1),则 a 的值是 14(3 分)如果一个三角形的三边分别为 1、,则其面积为 15(3 分)在平面直角坐标系中,A(4,0),B(1,5),点 A,B 之间
4、的距离是 16(3 分)点 A(m+1,3m7)在第一、三象限的角平分线上,则 m 17(3 分)在平面直角坐标系中,已知 A(0,0),B(3,0),C(1,2),若以 A、B、D为顶点的三角形与ABC 全等,则点 D 的坐标为 18(3 分)如图,在 RtABC 中,ACB90,B30,BC8,AD 平分CAB 交BC 于 D 点,E,F 分别是 AD,AC 上的动点,若 CE+EF 取到最小值时,EF 的长为 三、解答题(共 6 小题,共 46 分)19(6 分)计算:(1);(2)(3+)(3)20(6 分)已知:ABC 中,AB15,AC13,BC 边上的高 AD12,求 BC 21
5、(7 分)经过点 B(2,0)的直线 l1与直线 l2:y2x+8 相交于点 P(1,n)(1)请求出 n 的值;(2)试求出 PB 的长度(3)试求出直线 l1,直线 l2与 x 轴所围成的三角形面积 22(7 分)如图,ACBC,原计划从 A 地经 C 地到 B 地修建一条无隧道高速公路,后因技术攻关,可以打通由 A 地到 B 地的隧道修建高速公路,其中隧道部分总长为 2 公里,已知高速公路一公里造价为 3000 万元,隧道一公里造价为 5000 万元,AC80 公里,BC60 公里,则改建后可省工程费用是多少?23(8 分)如图,已知 A(1,2),B(3,1),C(4,3)(1)作AB
6、C 关于 y 轴的对称图形A1B1C1;(2)请直接写出点 A1,B1,C1的坐标;(3)直线 m 平行于 x 轴,在直线 m 上求作一点 P 使得ABP 的周长最小,请在图中画出 P 点 24(12 分)如图,在 RtABC 中,ACB90,E 为 AC 上一点,且 AEBC,过点 A作 ADCA,垂足为 A,且 ADAC,AB,DE 交于点 F(1)试说明 ABDE,DEAB(2)连接 BD,BE,若设 BCa,ACb,ABc,请利用四边形 ADBE 的面积说明 a2+b2c2 答案 1.D2.C3.B4.C5.C6.C7.D8.C9.B10.A 二、填空题(每小题 3 分,共 24 分)
7、11答案为:2 12 答案为:(答案不唯一)13答案为:1 14答案为:15答案为:5 16答案为:4 17 解:如图所示,有 3 个三角形和ABC 全等,A(0,0),B(3,0),C(1,2),D1的坐标是(2,2),D2的坐标是(1,2),D3的坐标是(2,2),18 解:如图,过点 C 作 CFAB 于点 F,交 AD 于 E,过点 E 作 EFAC 于 F,则BFC90,ACB90,B30,BC8,CFBC84,AD 平分CAB 交 BC 于 D 点,E,F 分别是 AD,AC 上的动点,F 与 F关于 AD 对称,CE+EFCE+EF,当 C、E、F三点共线,且 CFAB 时,CE
8、+EF 取到最小值 4;故答案为:4 三、解答题(共 6 小题,共 46 分)19 解:(1)原式 32;(2)原式95 4 20解:如图 1,锐角ABC 中,AB15,AC13,BC 边上高 AD12,在 RtABD 中,AB15,AD12,由勾股定理得,BD2AB2AD215212281,BD9,在 RtACD 中,AC13,AD12,由勾股定理得,CD2AC2AD213212225,CD5,BC 的长为 BD+DC9+514;如图 2,钝角ABC 中,AB15,AC13,BC 边上高 AD12,在 RtABD 中 AB15,AD12,由勾股定理得,BD2AB2AD215212281,BD
9、9,在 RtACD 中 AC13,AD12,由勾股定理得,CD2AC2AD213212225,CD5,BC 的长为 BDCD954 故 BC 的长为 14 或 4 21 解:(1)把点 P(1,n)代入 y2x+8 得:2+8n,解得:n6;(2)过 P 作 PAx 轴于 C,则 C 点的坐标为(1,0),在 RtCBP 中,PC|n|6,CB2(1)3,PB2PC2+CB2,PB3;(2)直线 l2:y2x+8 与 x 轴相交于点 A A 点的坐标为(4,0),AB6,P(1,6)SPAB6618 直线 l1,直线 l2与 x 轴所围成的三角形面积为 18 22解:在 RtABC 中,AB2BC2+AC2,AB100,(80+60)3000(1002)300025000116000(万元),答:改建后可省工程费用 116000 万元 23解:(1)如图 1 所示:(2)A1(1,2);B1(3,1);C1(4,3);(3)如图 2 所示:点 P 即为所求 24解:(1)ADCA,DAE90 在ABC 和DEA 中,ABCDEA(SAS),ABDE,31,DAE90,1+290,3+290,AFE90,ABDE;(2)连接 BD,BE,S四边形ADBESADE+SBDEDEAF+DEBFDEABc2,S四边形ADBESABE+SABDa2+b2,a2+b2c2,a2+b2c2