《2021-2022学年安徽省合肥市第一六八中学中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年安徽省合肥市第一六八中学中考数学考前最后一卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1商场将某种商品按原价的8折出售,仍可获利20元已知这种商品的进价为140元,那么这种商品的原价是()A160元 B180元 C200元 D220元2从中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()ABCD3某校有35名同学参
2、加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).A众数B中位数C平均数D方差4如图,在ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则ADE的周长等于()A8B4C12D165在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah例如:三点坐标分别为A(1,2),B(3,1),C(2,2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S
3、=ah=1若D(1,2)、E(2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A3或7 B4或6 C4或7 D3或66若实数 a,b 满足|a|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )ABCD7如图,将ABC绕点C(0,-1)旋转180得到ABC,设点A的坐标为(a,b),则点A的坐标为( )A(-a,-b)B(-a,-b-1)C(-a,-b+1)D(-a,-b-2)8如图是二次函数图象的一部分,其对称轴为x=1,且过点(3,0)下列说法:abc0;1ab=0;4a+1b+c0;若(5,y1),(,y1)是抛物线上两点,则y1y1其中说法正确的是( )A B C
4、D9方程x23x0的根是( )Ax0Bx3C,D,10下列各图中,1与2互为邻补角的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由_.月份六月七月八月用电量(千瓦时)290340360月平均用电量(千瓦时)33012写出一个一次函数,使它的图象经过第一、三、四象限:_13点G是三角形ABC的重心,那么 =_14将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_,这两条直线间的距离为_15若
5、正多边形的一个外角是45,则该正多边形的边数是_.16如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=_三、解答题(共8题,共72分)17(8分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.(1)请写出两个“关于轴对称的二次函数”;(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).18(8分)如图,直角ABC内接于O,点D是直角ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作ECP=AED,CP交DE的延长线于点P,连结PO交O于点F(1)求证:PC是O的切线;(2)若PC=3,P
6、F=1,求AB的长19(8分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD(1)求证:EB=GD;(2)若AB=5,AG=2,求EB的长20(8分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DEAB,BECD(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD21(8分)如图,一次函数y=x2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C(1)求二次函数的关系式及点C的坐标;(2)
7、如图,若点P是直线AB上方的抛物线上一点,过点P作PDx轴交AB于点D,PEy轴交AB于点E,求PD+PE的最大值;(3)如图,若点M在抛物线的对称轴上,且AMB=ACB,求出所有满足条件的点M的坐标22(10分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,EAF=45,试判断BE,EF,FD之间的数量关系小聪把ABE绕点A逆时针旋转90至ADG,通过证明AEFAGF;从而发现并证明了EF=BE+FD【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,EAF=45,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;
8、【联想拓展】(2)如图3,如图,BAC=90,AB=AC,点E、F在边BC上,且EAF=45,若BE=3,EF=5,求CF的长23(12分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.(1)若A、B移动到如图所示位置,计算的值.(2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.(3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时比大多少?请列式计算.24学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据
9、图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1所以该商品的原价为1元;故选:C【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键2、C【解析】根据
10、正方形的判定定理即可得到结论【详解】与左边图形拼成一个正方形,正确的选择为,故选C【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.3、B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了故选B点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数4、A【解析】AB的中垂线交BC于D,AC的中垂线交BC于E,DA=DB,EA=EC,则ADE的周长=
11、AD+DE+AE=BD+DE+EC=BC=8,故选A5、C【解析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 2或t1两种情况进行求解即可.【详解】解:由题可知a=3,则h=183=6,则可知t2或t1.当t2时,t-1=6,解得t=7;当t1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.6、D【解析】根据绝对值的意义即可解答【详解】由|a|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键7、D【解析】设点A
12、的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可【详解】根据题意,点A、A关于点C对称,设点A的坐标是(x,y),则=0,=-1,解得x=-a,y=-b-2,点A的坐标是(-a,-b-2)故选D【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A关于点C成中心对称是解题的关键8、C【解析】二次函数的图象的开口向上,a0。二次函数的图象y轴的交点在y轴的负半轴上,c0。二次函数图象的对称轴是直线x=1,。b=1a0。abc0,因此说法正确。1ab=1a1a=0,因此说法正确。二次函数图象的一部分,其对称轴为x=1,且过点(3,0),图象与
13、x轴的另一个交点的坐标是(1,0)。把x=1代入y=ax1+bx+c得:y=4a+1b+c0,因此说法错误。二次函数图象的对称轴为x=1,点(5,y1)关于对称轴的对称点的坐标是(3,y1),当x1时,y随x的增大而增大,而3y1y1,因此说法正确。综上所述,说法正确的是。故选C。9、D【解析】先将方程左边提公因式x,解方程即可得答案【详解】x23x0,x(x3)0,x10,x23,故选:D【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键10、D【解析】根据邻补角的定义可知:只有D图中的是邻补角,其它
14、都不是故选D二、填空题(本大题共6个小题,每小题3分,共18分)11、不合理,样本数据不具有代表性【解析】根据表中所取的样本不具有代表性即可得到结论【详解】不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量)故答案为:不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量)【点睛】本题考查了统计表,认真分析表中数据是解题的关键12、y=x1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k0,b0,由此可得如:y=x1(答案不唯一).13、【解析】根据题意画出图形,由,根据三角形法则,即可求得的长,又由点G是ABC的重心,根据重心
15、的性质,即可求得【详解】如图:BD是ABC的中线,=,=,点G是ABC的重心,=,故答案为: 【点睛】本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目14、y=x+1 【解析】已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1再利用等面积法求得这两条直线间的距离即可【详解】直线 y=x 沿y轴向上平移1个单位长度,所得直线的函数关系式为:y=x+1 A(0,1),B(1,0),AB=1,过点 O 作 OFAB 于点 F,则ABOF=OAOB,OF=,
16、即这两条直线间的距离为 故答案为y=x+1,【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k0)的图象为直线,当直线平移时 k 不变,当向上平移m个单位,则平移后直线的解析式为 y=kx+b+m15、1;【解析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045可求得边数【详解】多边形外角和是360度,正多边形的一个外角是45,36045=1即该正多边形的边数是1【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等)16、4【解析】点C是线段AD的中点,若CD=1,AD=12=2,
17、点D是线段AB的中点,AB=22=4,故答案为4.三、解答题(共8题,共72分)17、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为【解析】(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;(2)根据函数的特点得出a=m,-=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标【详解】解:(1)答案不唯一,如;(2)y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,即a=m,-=0,整理得m=a,n=-b,p=c,则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+
18、2c,函数y1+y2的顶点坐标为(0,2c)【点睛】本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键18、(1)证明见解析;(2)1【解析】试题分析:(1)连接OC,欲证明PC是O的切线,只要证明PCOC即可;(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题试题解析:(1)如图,连接OC,PDAB,ADE=90,ECP=AED,又EAD=ACO,PCO=ECP+ACO=AED+EAD=90,PCOC,PC是O切线;(2)延长PO交圆于G点,PFPG=,PC=3,PF=1,PG=9,FG=91=1,AB=FG=1考点:切线的判定;切割线定理19、(1)证明见解析;(2)
19、;【解析】(1)根据正方形的性质得到GAD=EAB,证明GADEAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BDAC,AC=BD=5,根据勾股定理计算即可【详解】(1)在GAD和EAB中,GAD=90+EAD,EAB=90+EAD,GAD=EAB,在GAD和EAB中,GADEAB,EB=GD; (2)四边形ABCD是正方形,AB=5,BDAC,AC=BD=5,DOG=90,OA=OD=BD=,AG=2 ,OG=OA+AG=,由勾股定理得,GD=,EB=【点睛】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键20、(1)四边形AC
20、BD是菱形;理由见解析;(2)证明见解析.【解析】(1)根据题意得出,即可得出结论;(2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.【详解】(1)解:四边形ACBD是菱形;理由如下:根据题意得:AC=BC=BD=AD,四边形ACBD是菱形(四条边相等的四边形是菱形);(2)证明:DEAB,BECD,四边形BEDM是平行四边形,四边形ACBD是菱形,ABCD,BMD=90,四边形ACBD是矩形,ME=BD,AD=BD,ME=AD【点睛】本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结
21、论是解决问题的关键.21、(1)二次函数的关系式为y;C(1,0);(2)当m2时,PDPE有最大值3;(3)点M的坐标为(,)或(,)【解析】(1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;(2)先证明PDEOAB,得到PD2PE设P(m,),则E(m,),PDPE3PE,然后配方即可得到结论(3)分两种情况讨论:当点M在在直线AB上方时,则点M在ABC的外接圆上,如图1求出圆心O1的坐标和半径,利用MO1=半径即可得到结论当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2求出点O2的坐标,算出DM的长,即可得到结论【详解】解:(1)令y
22、0,得:x4,A(4,0)令x0,得:y2,B(0,2)二次函数y的图像经过A、B两点,解得:,二次函数的关系式为y令y0,解得:x1或x4,C(1,0)(2)PDx轴,PEy轴,PDEOAB,PEDOBA,PDEOAB2,PD2PE设P(m,),则E(m,)PDPE3PE3()()0m4,当m2时,PDPE有最大值3(3)当点M在在直线AB上方时,则点M在ABC的外接圆上,如图1ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,t),解得:t2,圆心O1的坐标为(,2),半径为设M(,y)MO1=,解得:y=,点M的坐标为()当点M在在直线AB下方时,作O1关于AB的对称点O2,如图
23、2AO1O1B,O1ABO1BAO1Bx轴,O1BAOAB,O1ABOAB,O2在x轴上,点O2的坐标为 (,0),O2D1,DM,点M的坐标为(,)综上所述:点M的坐标为(,)或(,)点睛:本题是二次函数的综合题考查了求二次函数的解析式,求二次函数的最值,圆的有关性质难度比较大,解答第(3)问的关键是求出ABC外接圆的圆心坐标22、(1)DF=EF+BE理由见解析;(2)CF=1【解析】(1)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AEFAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,ACG=B,EAG=90,FC
24、G=ACB+ACG=ACB+B=90,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE理由:如图1所示,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,ADC=ABE=90,点C、D、G在一条直线上,EB=DG,AE=AG,EAB=GAD,BAG+GAD=90,EAG=BAD=90,EAF=15,FAG=EAGEAF=9015=15,EAF=GAF,在EAF和GAF中,EAFGAF,EF=FG,FD=FG+DG,DF=EF+BE;(2)BAC=90,AB=AC,将ABE绕点A顺时针旋
25、转90得ACG,连接FG,如图2,AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,FG2=FC2+CG2=BE2+FC2;又EAF=15,而EAG=90,GAF=9015,在AGF与AEF中,AEFAGF,EF=FG,CF2=EF2BE2=5232=16,CF=1“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫23、(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1【解析】(1)根据
26、数轴即可得到a,b数值,即可得出结果.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2,即可求解.(1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.【详解】(1)由图可知:a=10,b=2,a+b=2故a+b的值为2 (2)由B点不动,点A向左移动1个单位长,可得a=3,b=2b|a|=b+a=23=3故a的值为3,b|a|的值为3 (1)点A不动,点B向右移动15.1个单位长a=10,b=17.1ba=17.1(10)=27.1故b比a大27.1【点睛】本题主要考查了数轴,关键在于数形结合思想.24、(1)补全条形统计图见解析;“骑车”部
27、分所对应的圆心角的度数为108;(2)2人都是“喜欢乘车”的学生的概率为【解析】(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得【详解】(1)被调查的总人数为2550%50人;则步行的人数为50251510人;如图所示条形图,“骑车”部分所对应的圆心角的度数360108;(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,则有AB、AC、AD、BC、BD、CD这6种等可能的情况,其中2人都是“喜欢乘车”的学生有3种结果,所以2人都是“喜欢乘车”的学生的概率为【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小