《2021-2022学年浙江省上虞市实验中学中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年浙江省上虞市实验中学中考联考数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1分式有意义,则x的取值范围是()Ax2Bx0Cx2Dx72如图,小明从A处出发沿北偏西30方向行走至B处,又沿南偏西50方向行走至C处,此时再沿与出发时一致的方向行走至D处,则BCD的度数为() A100B80C5
2、0D203随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD4古希腊著名的毕达哥拉斯学派把1,3,6,10这样的数称为“三角形数”,而把1,4,9,16这样的数称为“正方形数”从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和下列等式中,符合这一规律的是()A133+10B259+16C3615+21D4918+315如图,在菱形纸片ABCD中,AB=4,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上则sinAFG的值为( )ABCD6在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,
3、46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )A0.3B0.4C0.5D0.67如图,ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4)若反比例函数y在第一象限内的图象与ABC有交点,则k的取值范围是()A1k4B2k8C2k16D8k168的相反数是 ( )ABC3D-39方程2x2x3=0的两个根为()Ax1=,x2=1Bx1=,x2=1Cx1=,x2=3Dx1=,x2=310某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是()
4、A0.15B0.2C0.25D0.3二、填空题(共7小题,每小题3分,满分21分)11已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_厘米12一个几何体的三视图如左图所示,则这个几何体是( )ABCD13如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_14在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y(x0)与此正方形的边有交点,则a的取值范围是_15如图,ABC中,AB6,AC4,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连
5、接EF,则线段EF的长为_16计算:_.17不等式组的解集是_三、解答题(共7小题,满分69分)18(10分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O连接OA、OB、OC、ODOE是边CD的中线,且AOB+COD180(1)如图2,当ABO是等边三角形时,求证:OEAB;(2)如图3,当ABO是直角三角形时,且AOB90,求证:OEAB;(3)如图4,当ABO是任意三角形时,设OAD,OBC,试探究、之间存在的数量关系?结论“OEAB”还成立吗?若成立,请你证明;若不成立,请说明理由19(5分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工
6、作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)2100084002025220018001600950请你根据上述内容,解答下列问题:该公司“高级技工”有 名;所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;小张到这家公司应聘普通工作人员请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平20(8分)关于x的一元二次方程ax2+bx+1=1(1)当b=a+2时,利用
7、根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根21(10分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高你认为这种测量方法是否可行?请说明理由22(10分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作P,则称点Q为P的“关联点”,P为点Q的“关联圆”(1
8、)已知O的半径为1,在点E(1,1),F(,),M(0,-1)中,O的“关联点”为_;(2)若点P(2,0),点Q(3,n),Q为点P的“关联圆”,且Q的半径为,求n的值;(3)已知点D(0,2),点H(m,2),D是点H的“关联圆”,直线yx+4与x轴,y轴分别交于点A,B若线段AB上存在D的“关联点”,求m的取值范围23(12分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作ABx轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P求反比例函数y=的表达式;求点B的坐标;求OAP的面积24(14分)如图,在矩形ABCD中,对角线AC,BD相交于
9、点O画出AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】直接利用分式有意义则分母不为零进而得出答案【详解】解:分式有意义,则x10,解得:x1故选:A【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.2、B【解析】解:如图所示:由题意可得:1=30,3=50,则2=30,故由DCAB,则4=30+50=8
10、0故选B点睛:此题主要考查了方向角的定义,正确把握定义得出3的度数是解题关键3、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.4、C【解析】本题考查探究、归纳的数学思想方法题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(
11、n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和故选:C【点睛】此题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的5、B【解析】如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE由题意可得:DE=1,HDE=60,BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sinAFG的值【详解】解:如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE四边形ABC
12、D是菱形,AB=4,DAB=60,AB=BC=CD=AD=4,DAB=DCB=60,DCABHDE=DAB=60,点E是CD中点DE=CD=1在RtDEH中,DE=1,HDE=60DH=1,HE= AH=AD+DH=5在RtAHE中,AE=1 AN=NE=,AEGF,AF=EFCD=BC,DCB=60BCD是等边三角形,且E是CD中点BECD,BC=4,EC=1BE=1CDABABE=BEC=90在RtBEF中,EF1=BE1+BF1=11+(AB-EF)1EF=由折叠性质可得AFG=EFG,sinEFG= sinAFG = ,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当
13、的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键6、C【解析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解【详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=0.1故选C【点睛】本题考查了频数与频率,频率=7、C【解析】试题解析:由于ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论ABC是直角三角形,当反比例函数经过点A时k最小,经过点C时k最大,k最小=12=2,k最大=44=1,2k1故选C8、B【解析】先求的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上
14、,点到原点的距离是,所以的绝对值是;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1因此的相反数是故选B9、A【解析】利用因式分解法解方程即可【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1故选A【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)10、B【解析】读图可知:参
15、加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,故选B.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可【详解】解:两圆的半径分别为2和5,两圆内切,dRr521cm,故答案为1【点睛】此题考查了圆与圆的位置关系解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系12、A【解析】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.【详解】根据主视图和左视
16、图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.主视图中间的线是实线.故选A.【点睛】考查简单几何体的三视图,掌握常见几何体的三视图是解题的关键.13、【解析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可【详解】根据图示可得,故答案是:【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽14、 【解析】因为A点的坐标为(a,a),则C(a1,a1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.【详解】解
17、:A点的坐标为(a,a),C(a1,a1),当C在双曲线y=时,则a1=,解得a=+1;当A在双曲线y=时,则a=,解得a=,a的取值范围是a+1故答案为a+1【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.15、1【解析】在AGF和ACF中,AGFACF,AG=AC=4,GF=CF,则BG=ABAG=64=2.又BE=CE,EF是BCG的中位线,EF=BG=1.故答案是:1.16、【解析】根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可【详解】解:原式=【点睛】本题考查了二次根式的混合运算:先
18、把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍17、2x1【解析】分别解两个不等式得到x1和x2,然后根据大小小大中间找确定不等数组的解集【详解】解:,解得x1,解得x2,所以不等式组的解集为2x1故答案为2x1【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到三、解答题(共7小题,满分69分)18、(1)详见
19、解析;(2)详见解析;(3)+90;成立,理由详见解析【解析】(1)作OHAB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明OCEOBH,根据全等三角形的性质证明;(2)证明OCDOBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;(3)根据等腰三角形的性质、三角形内角和定理计算;延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明【详解】(1)作OHAB于H,AD、BC的垂直平分线相交于点O,OD=OA,OB=OC,ABO是等边三角形,OD=OC,AOB=60,AOB+COD180COD=120,OE是边CD的中
20、线,OECD,OCE=30,OA=OB,OHAB,BOH=30,BH=AB,在OCE和BOH中,OCEOBH,OE=BH,OE=AB;(2)AOB=90,AOB+COD=180,COD=90,在OCD和OBA中, ,OCDOBA,AB=CD,COD=90,OE是边CD的中线,OE=CD,OE=AB;(3)OAD=,OA=OD,AOD=1802,同理,BOC=1802,AOB+COD=180,AOD+COB=180,1802+1802=180,整理得,+=90;延长OE至F,使EF=OE,连接FD、FC,则四边形FDOC是平行四边形, OCF+COD=180,AOB=FCO,在FCO和AOB中,
21、FCOAOB,FO=AB,OE=FO=AB【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键19、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些(4)能反映该公司员工的月工资实际水平【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去
22、掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=501323241=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平用1700元或1600元来介绍更合理些(4)(元)能反映该公司员工的月工资实际水平20、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=2【解析】分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写
23、出一组满足条件的,的值即可.详解:(2)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.21、这种测量方法可行,旗杆的高为21.1米【解析】分析:根据已知得出过F作FGAB于G,交CE于H,利用相似三角形的判定得出AGFEHF,再利用相似三角形的性质得出即可详解:这种测量方法可行 理由如下:设旗杆高AB=x过F作FGAB于G,交CE于H(如图)所以AGFEHF因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.
24、11.1=2,AG=x1.1由AGFEHF,得,即,所以x1.1=20,解得x=21.1(米)答:旗杆的高为21.1米点睛:此题主要考查了相似三角形的判定与性质,根据已知得出AGFEHF是解题关键22、(1)F,M;(1)n1或1;(3)m或 m【解析】(1)根据定义,认真审题即可解题,(1)在直角三角形PHQ中勾股定理解题即可,(3)当D与线段AB相切于点T时,由sinOBA=,得DTDH1,进而求出m1=即可,当D过点A时,连接AD由勾股定理得DADH1即可解题.【详解】解:(1)OFOM1,点F、点M在上,F、M是O的“关联点”,故答案为F,M(1)如图1,过点Q作QHx轴于HPH1,Q
25、Hn,PQ.由勾股定理得,PH1+QH1PQ1,即11+n1=()1,解得,n1或1(3)由yx+4,知A(3,0),B(0,4)可得AB5如图1(1),当D与线段AB相切于点T时,连接DT则DTAB,DTB90sinOBA=,可得DTDH1,m1=,如图1(1),当D过点A时,连接AD由勾股定理得DADH1综合可得:m或 m【点睛】本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.23、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)OAP的面积=1【解析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=
26、OA=1,由ABx轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得【详解】(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作ACx轴于点C,则OC=4、AC=3,OA=1,ABx轴,且AB=OA=1,点B的坐标为(9,3);(3)点B坐标为(9,3),OB所在直线解析式为y=x,由可得点P坐标为(6,2),(负值舍去),过点P作PDx轴,延长DP交AB于点E,则点E坐标为(6,3),AE=2、PE=1、PD=2,则OAP的面积=(2+6)36221=1【点睛】本题考查了反比例函数与几
27、何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.24、(1)如图所示见解析;(2)四边形OCED是菱形理由见解析.【解析】(1)根据图形平移的性质画出平移后的DEC即可;(2)根据图形平移的性质得出ACDE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论【详解】(1)如图所示;(2)四边形OCED是菱形理由:DEC由AOB平移而成,ACDE,BDCE,OA=DE,OB=CE,四边形OCED是平行四边形四边形ABCD是矩形,OA=OB,DE=CE,四边形OCED是菱形【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.