《2019年广东省梅州市大埔县中考数学一模试卷2798.pdf》由会员分享,可在线阅读,更多相关《2019年广东省梅州市大埔县中考数学一模试卷2798.pdf(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 第 1 页(共 23 页)2019 年广东省梅州市大埔县中考数学一模试卷 一、选择题:本题共 10 小题,每小题 3 分,共 30 分,每小题给出四个答案,其中只有一个是正确的 1(3 分)计算(1)2 的正确结果是()A1 B2 C1 D2 2(3 分)如图是一个正六棱柱的茶叶盒,其俯视图为()A B C D 3(3 分)下列计算正确的是()Aa2+a3a5 Ba2a3a6 C(a2)3a6 D(ab)2ab2 4(3 分)不等式组的解集为()Ax1 Bx1 Cx2 Dx3 5(3 分)下列说法正确的是()A为了解我国中学生课外阅读的情况,应采取全面调查的方式B一组数据 1、2、5、5、5
2、、3、3 的中位数和众数都是 5 C抛掷一枚硬币 100 次,一定有 50 次“正面朝上”D若甲组数据的方差是 0.03,乙组数据的方差是 0.1,则甲组数据比乙组数据稳定6(3 分)如图,在ABC 中,点 D 在 AB 上,点 E 在 AC 上,DEBC,若A70,AED60,则B 的大小为()第 2 页(共 23 页)A50 B60 C70 D55 7(3 分)如图,在ABC 中,以点 B 为圆心,以 BA 长为半径画弧交边 BC 于点 D,连接 AD若B40,C36,则DAC 的度数是()A70 B44 C34 D24 8(3 分)如图,直线 l 是O 的切线,A 为切点,B 为直线 l
3、 上一点,连接 OB 交O 于点 C若 AB12,OA5,则 BC 的长为()A5 B6 C7 D8 9(3 分)如图,在平面直角坐标系中,ABCD 的顶点 A 的坐标为(4,0),顶点 B 在第二象限,BAO60,BC 交 y 轴于点 D,BD:DC3:1,若函数 y(k0,x 0)的图象经过点 C,则 k 的值为()A B C D 10(3 分)已知点 P 为某个封闭图形边界上一定点,动点 M 从点 P 出发,沿其边界顺时针匀速运动一周,设点 M 的运动时间为 x,线段 PM 的长度为 y,表示 y 与 x 的函数图象大致如图所示,则该封闭图形可能是()第 3 页(共 23 页)A B C
4、 D 二、填空题:(本大题共 6 小题,每小题 4 分,共 24 分)11(4 分)分解因式:ax2ay2 12(4 分)有意义,x 的取值范围是 13(4 分)据统计,2018 年春节我省出行人数约 107000000 人107000000 这个数用科学记数法表示为 14(4 分)已知关于 x 的方程 2x+a+50 的解是 x1,则 a 的值为 15(4 分)如图,在矩形 ABCD 中,AB5,AD3矩形 ABCD 绕着点 A 逆时针旋转一定角度得到矩形 ABCD若点 B 的对应点 B落在边 CD 上,则 BC 的长为 16(4 分)如图,在平面直角坐标系中,ABC 的顶点 A 在第一象限
5、,点 B,C 的坐标为 (2,1),(6,1),BAC90,ABAC,直线 AB 交 x 轴于点 P若ABC 与ABC 关于点 P 成中心对称,则点 A的坐标为 第 4 页(共 23 页)三、解答题(一):(本大题共 3 小题,每小题 6 分,共 18 分)17(6 分)计算:(2019)0+sin3021 18(6 分)先化简,再求值:a(a2+2a+4)2(a+1)2,其中 a2 19(6 分)某学生化简分式+出现了错误,解答过程如下:原式+(第一步)(第二步)(第三步)(1)该学生解答过程是从第 步开始出错的,其错误原因是 ;(2)请写出此题正确的解答过程 四、解答题(二):(本大题共
6、3 小题,每小题 7 分,共 21 分)20(7 分)如图,在菱形 ABCD 中,A110,点 E 是菱形 ABCD 内一点,连结 CE 绕点 C 顺时针旋转 110,得到线段 CF,连结 BE,DF,若E86,求F 的度数 21(7 分)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为 342km,隧道累计长度的 2 倍比桥梁累计长度多 36km求隧道累计长度与桥梁累计长度 22(7 分)某商场甲、乙、丙三名业务员 5 个月的销售额(单位:万元)如下表:月份 销售额 人员 第 1 月 第 2 月 第 3 月 第 4 月 第 5 月 甲 7.2 9
7、.6 9.6 7.8 9.3 乙 5.8 9.7 9.8 5.8 9.9 丙 4 6.2 8.5 9.9 9.9(1)根据上表中的数据,将下表补充完整:第 5 页(共 23 页)统计值 数值人员 平均数(万元)中位数(万元)众数(万元)甲 9.3 9.6 乙 8.2 5.8 丙 7.7 8.5 (2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由 五、解答题(三):(本大题共 3 小题,每小题 9 分,共 27 分)23(9 分)如图,在平面直角坐标系中,直线 AB 与函数 y(x0)的图象交于点 A(m,2),B(2,n)过点 A 作 AC 平行于 x 轴交 y 轴于点
8、 C,在 y 轴负半轴上取一点 D,使 ODOC,且ACD 的面积是 6,连接 BC(1)求 m,k,n 的值;(2)求ABC 的面积 24(9 分)如图,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽水槽内水面的高度 y(cm)与注水时间 x(s)之间的函数图象如图 所示 (1)正方体的棱长为 cm;(2)求线段 AB 对应的函数解析式,并写出自变量 x 的取值范围;(3)如果将正方体铁块取出,又经过 t(s)恰好将此水槽注满,直接写出 t 的值 第 6 页(共 23 页)25(9 分)如图,在 RtABC 中,ACB90,A45,AB4cm点 P 从点 A
9、 出发,以 2cm/s 的速度沿边 AB 向终点 B 运动过点 P 作 PQAB 交折线 ACB 于点 Q,D 为 PQ 中点,以 DQ 为边向右侧作正方形 DEFQ设正方形 DEFQ 与ABC 重叠部分图形的面积是 y(cm2),点 P 的运动时间为 x(s)(1)当点 Q 在边 AC 上时,正方形 DEFQ 的边长为 cm(用含 x 的代数式表示);(2)如图当点 P 不与点 B 重合时,求点 F 落在边 BC 上时 x 的值;(3)当 0 x2 时,求 y 关于 x 的函数解析式;并求出 x 为何值时,y 为最大值 第 7 页(共 23 页)2019 年广东省梅州市大埔县中考数学一模试卷
10、 参考答案与试题解析 一、选择题:本题共 10 小题,每小题 3 分,共 30 分,每小题给出四个答案,其中只有一个是正确的 1(3 分)计算(1)2 的正确结果是()A1 B2 C1 D2 【分析】有理数的乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0 的任何正整数次幂都是 0,据此求解即可【解答】解:(1)21 故选:C【点评】此题主要考查了有理数的乘方的运算方法,要熟练掌握 2(3 分)如图是一个正六棱柱的茶叶盒,其俯视图为()A B C D 【分析】根据正六棱柱的俯视图为正六边形,即可得出结论 【解答】解:正六棱柱的俯视图为正六边形 故选:B【点评】本题
11、考查了简单几何体的三视图,熟记正六棱柱的三视图是解题的关键 3(3 分)下列计算正确的是()Aa2+a3a5 Ba2a3a6 C(a2)3a6 D(ab)2ab2【分析】根据整式的运算法则即可求出答案 【解答】解:(A)a2 与 a3 不是同类项,故 A 错误;第 8 页(共 23 页)(B)原式a5,故 B 错误;(D)原式a2b2,故 D 错误;故选:C【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型 4(3 分)不等式组的解集为()Ax1 Bx1 Cx2 Dx3 【分析】先求出两个不等式的解集,再求其公共解 【解答】解:,由得,x1,由得,x3,所以不等式
12、组的解集为 x1,故选:A【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)5(3 分)下列说法正确的是()A为了解我国中学生课外阅读的情况,应采取全面调查的方式B一组数据 1、2、5、5、5、3、3 的中位数和众数都是 5 C抛掷一枚硬币 100 次,一定有 50 次“正面朝上”D若甲组数据的方差是 0.03,乙组数据的方差是 0.1,则甲组数据比乙组数据稳定 【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题 【解答】解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式
13、,故选项 A 错误,一组数据 1、2、5、5、5、3、3 的中位数和众数分别是 3、5,故选项 B 错误,投掷一枚硬币 100 次,可能有 50 次“正面朝上”,但不一定有 50 次“正面朝上”,故选项 C 错误,若甲组数据的方差是 0.03,乙组数据的方差是 0.1,则甲组数据比乙组数据稳定,故选项 D 正确,第 9 页(共 23 页)故选:D 【点评】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义 6(3 分)如图,在ABC 中,点 D 在 AB 上,点 E 在 AC 上,DEBC,若A70,AED60,则B 的大小为()A50 B60 C70 D55
14、【分析】根据平行线的性质得到CAED60,根据三角形的内角和即可得到结论【解答】解:DEBC,CAED60,A70,B180AC50,故选:A【点评】本题考查了平行线的性质,三角形的内角和,熟练掌握三角形的内角和是解题的关键 7(3 分)如图,在ABC 中,以点 B 为圆心,以 BA 长为半径画弧交边 BC 于点 D,连接 AD若B40,C36,则DAC 的度数是()A70 B44 C34 D24 【分析】由 ABBD,B40得到ADB70,再根据三角形的外角的性质即可得到结论【解答】解:ABBD,B40,ADB70,C36,第 10 页(共 23 页)DACADBC34 故选:C【点评】本题
15、考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键,注意三角形外角性质的应用 8(3 分)如图,直线 l 是O 的切线,A 为切点,B 为直线 l 上一点,连接 OB 交O 于点 C若 AB12,OA5,则 BC 的长为()A5 B6 C7 D8 【分析】根据勾股定理,可得 OB 的长,根据线段的和差,可得答案 【解答】解:由勾股定理,得 OB 13,CBOBOC1358,故选:D【点评】本题考查了切线的性质,利用勾股定理得出 OB 的长是解题关键 9(3 分)如图,在平面直角坐标系中,ABCD 的顶点 A 的坐标为(4,0),顶点 B 在第二象限,BAO60,BC 交 y
16、轴于点 D,BD:DC3:1,若函数 y(k0,x 0)的图象经过点 C,则 k 的值为()A B C D【分析】根据题意可以求得点 C 的坐标,再根据函数 y(k0,x0)的图象经过点 C,从而可以求得 k 的值,本题得以解决 【解答】解:四边形 ABCD 是平行四边形,第 11 页(共 23 页)BAOBCO,AOBC,点 A 的坐标为(4,0),BAO60,BC 交 y 轴于点 D,BD:DC3:1,ODC 90,BC4,BCO60,CD1,OD,点 C 的坐标为(1,),函数 y(k0,x0)的图象经过点 C,得 k,故选:B【点评】本题考查反比例函数图象上点的坐标特征、反比例函数的性
17、质、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答 10(3 分)已知点 P 为某个封闭图形边界上一定点,动点 M 从点 P 出发,沿其边界顺时针匀速运动一周,设点 M 的运动时间为 x,线段 PM 的长度为 y,表示 y 与 x 的函数图象大致如图所示,则该封闭图形可能是()A B C D 【分析】先观察图象得到 y 与 x 的函数图象分三个部分,则可对有 4 边的封闭图形进行淘汰,利用圆的定义,P 点在圆上运动时,开始 y 随 x 的增大而增大,然后 y 随 x 的减小而减小,则可对 D 进行判断,从而得到正确选项【解答】解:y 与 x 的函数图象分三个部分,而 B 选
18、项和 C 选项中的封闭图形都有 4 条 线段,其图象要分四个部分,所以 B、C 选项不正确;D 选项中的封闭图形为圆,开始 y 第 12 页(共 23 页)随 x 的增大而增大,然后 y 随 x 的减小而减小,所以 D 选项不正确;A 选项为三角形,M 点在三边上运动对应三段图象,且 M 点在 P 点的对边上运动时,PM 的长有最小值 故选:A【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图 二、填空题:(本大题共 6 小题,每小题 4
19、分,共 24 分)11(4 分)分解因式:ax2ay2 a(x+y)(xy)【分析】应先提取公因式 a,再对余下的多项式利用平方差公式继续分解【解答】解:ax2ay2,a(x2y2),a(x+y)(xy)故答案为:a(x+y)(xy)【点评】本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底 12(4 分)有意义,x 的取值范围是 x3 【分析】依据二次根式被开方数大于等于零求解即可 【解答】解:有意义,3x0 解得:x3 故答案为:x3 【点评】本题主要考查的是二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键 13(4 分)据统计,2018 年春节我省出
20、行人数约 107000000 人107000000 这个数用科学记数法表示为 1.07108 【分析】科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值1 时,n 是非负数;当原数的绝对值1 时,n 是负数 第 13 页(共 23 页)【解答】解:107000000 这个数用科学记数法表示为:1.07108 故答案为 1.07108 第 14 页(共 23 页)【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整
21、数,表示时关键要正确确定 a 的值以及 n 的值 14(4 分)已知关于 x 的方程 2x+a+50 的解是 x1,则 a 的值为 7 【分析】把 x1 代入方程计算即可求出 a 的值 【解答】解:把 x1 代入方程得:2+a+50,解得:a7,故答案为:7 【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值 15(4 分)如图,在矩形 ABCD 中,AB5,AD3矩形 ABCD 绕着点 A 逆时针旋转一定角度得到矩形 ABCD若点 B 的对应点 B落在边 CD 上,则 BC 的长为 1 【分析】BC5BD在直角ABD 中,利用勾股定理求得 BD 的长度即可 【解
22、答】解:由旋转的性质得到 ABAB5,在直角ABD 中,D90,AD3,ABAB5,所以 BD4,所以 BC5BD1 故答案是:1 【点评】本题考查了旋转的性质,矩形的性质解题时,根据旋转的性质得到 ABAB 5 是解题的关键 16(4 分)如图,在平面直角坐标系中,ABC 的顶点 A 在第一象限,点 B,C 的坐标为 (2,1),(6,1),BAC90,ABAC,直线 AB 交 x 轴于点 P若ABC 与ABC 第 15 页(共 23 页),解得 关于点 P 成中心对称,则点 A的坐标为(2,3)【分析】根据等腰直角三角形,可得 AB 的长,再根据锐角三角函数,可得 AD,BD 的长,再根据
23、待定系数法,可得函数解析式,根据自变量与函数值得对应关系,可得 P 点坐标,根据中点坐标公式,可得答案【解答】解:如图:点 B,C 的坐标为(2,1),(6,1),得 BC4 由 BAC90,ABAC,得 AB2,ABD45,BDAD2,A(4,3),设 AB 的解析式为 ykx+b,将 A,B 点坐标代入,得 ,AB 的解析式为 yx1,当 y0 时,x1,即 P(1,0),由中点坐标公式,得xA2xPxA242,第 16 页(共 23 页)yA2yAyA033,A(2,3)故答案为:(2,3)【点评】本题考查了等腰直角三角形,利用等腰直角三角形得出 AB 的长是解题关键 三、解答题(一):
24、(本大题共 3 小题,每小题 6 分,共 18 分)17(6 分)计算:(2019)0+sin3021【分析】直接利用特殊角的三角函数值以及负指数幂的性质和零指数幂的性质分别化简得出答案【解答】解:原式21+1 【点评】此题主要考查了实数运算,正确化简各数是解题关键 18(6 分)先化简,再求值:a(a2+2a+4)2(a+1)2,其中 a2【分析】原式利用完全平方公式化简,去括号合并得到最简结果,把 a 的值代入计算即可求出值【解答】解:原式a3+2a2+4a2a24a2a32,当 a2 时,原式826【点评】此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键 19(6 分)某
25、学生化简分式+出现了错误,解答过程如下:原式+(第一步)(第二步)(第三步)(1)该学生解答过程是从第 一 步开始出错的,其错误原因是 分式的基本性质;(2)请写出此题正确的解答过程 【分析】根据分式的运算法则即可求出答案 【解答】解:(1)一、分式的基本性质用错;(2)原式+第 17 页(共 23 页)故答案为:(1)一、分式的基本性质用错;【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型 四、解答题(二):(本大题共 3 小题,每小题 7 分,共 21 分)20(7 分)如图,在菱形 ABCD 中,A110,点 E 是菱形 ABCD 内一点,连结 CE 绕点
26、 C 顺时针旋转 110,得到线段 CF,连结 BE,DF,若E86,求F 的度数 【分析】由菱形的性质有 BCCD,BCDA110,根据旋转的性质知 CECF,ECFBCD110,于是得到BCEDCF110DCE,根据全等三角形的 判定证得BCEDCF,根据全等三角形的性质即可得到结论【解答】解:菱形 ABCD,BCCD,BCDA110,由旋转的性质知,CECF,ECFBCD110,BCEDCF110DCE,在BCE 和DCF 中,BCEDCF,FE86 【点评】本题主要考查了菱形的性质,旋转的性质,全等三角形的性质和判定,由旋转的性质得到 CECF,ECFBCD 是解题的关键 21(7 分
27、)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为 342km,隧道累计长度的 2 倍比桥梁累计长度多 36km求隧道累计长度与桥梁累计长度【分析】设隧道累计长度为 xkm,桥梁累计长度为 ykm,根据“隧道累计长度与桥梁累计长度之和为 342km,隧道累计长度的 2 倍比桥梁累计长度多 36km”,即可得出关于 x、y 第 18 页(共 23 页)的二元一次方程组,解之即可得出结论 【解答】解:设隧道累计长度为 xkm,桥梁累计长度为 ykm,根据题意得:,解得:答:隧道累计长度为 126km,桥梁累计长度为 216km 【点评】本题考查了二元一
28、次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键 22(7 分)某商场甲、乙、丙三名业务员 5 个月的销售额(单位:万元)如下表:月份 销售额人员 第 1 月 第 2 月 第 3 月 第 4 月 第 5 月 甲 7.2 9.6 9.6 7.8 9.3 乙 5.8 9.7 9.8 5.8 9.9 丙 4 6.2 8.5 9.9 9.9(1)根据上表中的数据,将下表补充完整:统计值数值 人员 平均数(万元)中位数(万元)众数(万元)甲 8.7 9.3 9.6 乙 8.2 9.7 5.8 丙 7.7 8.5 9.9 (2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理
29、由 【分析】(1)根据算术平均数、众数、中位数的定义解答;(2)根据平均数意义进行解答【解答】解:(1)(7.2+9.6+9.6+7.8+9.3)8.7(万元)把乙按照从小到大依次排列,可得 5.8,5.8,9.7,9.8,9.9;中位数为 9.7 万元 第 19 页(共 23 页)丙中出现次数最多的数为 9.9 万元 故答案为:8.7,9.7,9.9;(2)我赞同甲的说法甲的平均销售额比乙、丙都高 【点评】本题考查了众数、中位数、加权平均数的定义,学会分析图表是解题的关键 五、解答题(三):(本大题共 3 小题,每小题 9 分,共 27 分)23(9 分)如图,在平面直角坐标系中,直线 AB
30、 与函数 y(x0)的图象交于点 A(m,2),B(2,n)过点 A 作 AC 平行于 x 轴交 y 轴于点 C,在 y 轴负半轴上取一点 D,使 ODOC,且ACD 的面积是 6,连接 BC(1)求 m,k,n 的值;(2)求ABC 的面积 【分析】(1)由点 A 的纵坐标为 2 知 OC2,由 ODOC 知 OD1、CD3,根据 ACD 的面积为 6 求得 m4,将 A 的坐标代入函数解析式求得 k,将点 B 坐标代入函数解析式求得 n;(2)作 BEAC,得 BE2,根据三角形面积公式求解可得 【解答】解:(1)点 A 的坐标为(m,2),AC 平行于 x 轴,OC2,ACy 轴,OD
31、OC,OD1,CD3,ACD 的面积为 6,CDAC6,第 20 页(共 23 页)AC4,即 m4,则点 A 的坐标为(4,2),将其代入 y可得 k8,点 B(2,n)在 y的图象上,n4;(2)如图,过点 B 作 BEAC 于点 E,则 BE2,SABC ACBE 424,即ABC 的面积为 4【点评】本题主要考查反比例函数与一次函数的交点问题,根据三角形的面积求得点 A 的坐标及待定系数法求函数解析式是解题的关键 24(9 分)如图,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽水槽内水面的高度 y(cm)与注水时间 x(s)之间的函数图象如图 所示
32、(1)正方体的棱长为 10 cm;(2)求线段 AB 对应的函数解析式,并写出自变量 x 的取值范围;(3)如果将正方体铁块取出,又经过 t(s)恰好将此水槽注满,直接写出 t 的值 第 21 页(共 23 页)【分析】(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量 x 的取值范围;(3)利用一次函数图象结合水面高度的变化得出 t 的值 【解答】解:(1)由题意可得:12 秒时,水槽内水面的高度为 10cm,12 秒后水槽内高度变化趋势改变,故正方体的棱长为 10cm;故答案为:10;(2)设线段 AB 对应的
33、函数解析式为:ykx+b,图象过 A(12,10),B(28,20),解得:,线段 AB 对应的解析式为:yx+(12x28);(3)281216(s),没有立方体时,水面上升 10cm,所用时间为:16 秒,前 12 秒由立方体的存在,导致水面上升速度加快了 4 秒,将正方体铁块取出,经过 4 秒恰好将此水槽注满 【点评】此题主要考查了一次函数的应用,正确利用函数图象获取正确信息是解题关键 25(9 分)如图,在 RtABC 中,ACB90,A45,AB4cm点 P 从点 A 出发,以 2cm/s 的速度沿边 AB 向终点 B 运动过点 P 作 PQAB 交折线 ACB 于点 Q,D 为 P
34、Q 中点,以 DQ 为边向右侧作正方形 DEFQ设正方形 DEFQ 与ABC 重叠部分图形的面积是 y(cm2),点 P 的运动时间为 x(s)(1)当点 Q 在边 AC 上时,正方形 DEFQ 的边长为 x cm(用含 x 的代数式表示);(2)如图当点 P 不与点 B 重合时,求点 F 落在边 BC 上时 x 的值;第 22 页(共 23 页)(3)当 0 x2 时,求 y 关于 x 的函数解析式;并求出 x 为何值时,y 为最大值 【分析】(1)根据已知条件得到AQP45,求得 PQAP2x,由于 D 为 PQ 中点,于是得到 DQx;(2)如图,延长 FE 交 AB 于 G,由题意得
35、AP2x,由于 D 为 PQ 中点,得到 DQ x,求得 GP2x,列方程于是得到结论;(3)如图,当 0 x时,根据正方形的面积公式得到 yx2;当x1 时,过 C 作 CHAB 于 H,交 FQ 于 K,则 CHAB2,根据正方形和三角形面积公式得到 y 关于 x 的函数解析式,求出最大值;当 1x2 时,PQ42x,根据三角形的面积公式得到关系式即可【解答】解:(1)ACB90,A45,PQAB,AQP45,PQAP2x,D 为 PQ 中点,DQx,故答案为:x;(2)如图,延长 FE 交 AB 于 G,由题意得 AP2x,D 为 PQ 中点,DQx,GPx,2x+x+2x4,x;(3)
36、分三种情况:第 23 页(共 23 页)如图,当 0 x时,yS 正方形 DEFQDQ2x2,yx2;如图,当x1 时,过 C 作 CHAB 于 H,交 FQ 于 K,则 CHAB2,PQAP2x,CK22x,MQ2CK44x,FMx(44x)5x4,yS 正方形 DEFQSMNFDQ2FM2,yx2(5x4)2x2+20 x8,yx2+20 x8;当 x 时,y 有最大值;如图,当 1x2 时,PQ42x,DQ2x,ySDEQ DQ2,y(2x)2,yx22x+2;综上所述,y 关于 x 的函数解析式为 yx2(0 x)或 yx2+20 x8(x 1)或 yx22x+2(1x2);当 x 时,y 有最大值 第 24 页(共 23 页)【点评】本题是四边形综合题目,考查了等腰直角三角形的性质,正方形的性质,图形面积的计算、二次函数、以及分类讨论等知识;正确的作出图形是解题的关键,注意分类讨论