《小学六年级数学知识点归纳2821.pdf》由会员分享,可在线阅读,更多相关《小学六年级数学知识点归纳2821.pdf(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小学六年级数学知识点归纳 2017 小学六年级数学知识点归纳 数量关系式 1、每份数份数总数 总数每份数份数 总数份数每份数 2、1 倍数倍数几倍数 几倍数1 倍数倍数 几倍数倍数1 倍数 3、速度时间路程 路程速度时间 路程时间速度 4、单价数量总价 总价单价数量 总价数量单价 5、工作效率工作时间工作总量 工作总量工作效率工作时间 工作总量工作时间工作效率 6、加数加数和 和一个加数另一个加数 7、被减数减数差 被减数差减数差减数被减数 8、因数因数积 积一个因数另一个因数 9、被除数除数商 被除数商除数商除数被除数 小学数学图形计算公式 1、正方形(C:周长 S:面积 a:边长)周长边长
2、4C=4a 面积=边长边长 S=aa 2、正方体(V:体积 a:棱长)表面积=棱长棱长6S 表=aa6 体积=棱长棱长棱长 V=aaa 3、长方形(C:周长 S:面积 a:边长)周长=(长+宽)2C=2(a+b)面积=长宽 S=ab 4、长方体(V:体积 s:面积 a:长 b:宽 h:高)(1)表面积(长宽+长高+宽高)2S=2(ab+ah+bh)(2)体积=长宽高 V=abh 5、三角形(s:面积 a:底 h:高)面积=底高2s=ah2 三角形高=面积2底三角形底=面积2高 6、平行四边形(s:面积 a:底 h:高)面积=底高 s=ah 7、梯形(s:面积 a:上底 b:下底 h:高)面积=
3、(上底+下底)高2s=(a+b)h2 8、圆形(S:面积 C:周长 d=直径 r=半径)(1)周长=直径=2半径 C=d=2r(2)面积=半径半径 9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长高=ch(2r 或 d)(2)表面积=侧面积+底面积2(3)体积=底面积高(4)体积侧面积2半径 10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积高3 11、总数总份数平均数 12、和差问题的公式(和差)2大数(和差)2小数 13、和倍问题 和(倍数1)小数 小数倍数大数(或者和小数大数)14、差倍问题 差(倍数1)小数 小数倍数大数(
4、或小数差大数)15、相遇问题 相遇路程速度和相遇时间 相遇时间相遇路程速度和 速度和相遇路程相遇时间 16、浓度问题 溶质的重量溶剂的重量溶液的重量 溶质的重量溶液的重量100%浓度 溶液的重量浓度溶质的重量 溶质的重量浓度溶液的重量 17、利润与折扣问题 利润售出价成本 利润率利润成本100%(售出价成本1)100%涨跌金额本金涨跌百分比 利息本金利率时间 2020 年公务员考试行测冲刺:归纳法巧解数学运算题 在对数量关系的考查中,有一类数学运算题,根据题干叙述,不能明确找到解题思路,对其所考查的知识点也不能准确把握,这种情况下可以从已知条件入手,通过对简单情况的分析,归纳出这类问题的一般规
5、律,以达到最终解题的目的。如下面这道 2010 年公务员考试真题:该题从已知条件入手,通过分析简单情况,归纳出一般规律,正是运用了解决数学运算问题的一个基本方法:归纳法。又如下面这道公务员考试真题:【例题】一根长 200 米的绳子对折三次后从中间剪断,最后绳子的段数为()段。A.8B.9C.11D.16【名师解析】一根绳子有两个端点。对折一次变为 2 段(仍是两个端点),从中间剪断会增加 22 个端点,加上原来绳子的两端的端点,共有 2+4=6 个端点,两个端点构成一段,共有 62=3 段。数学运算是公务员考试中许多考生花费时间长、正确率低的一个部分,而时间和正确率往往取决于解题方法是否简便、
6、有效。合理运用猜证结合思想可缩减做题时间,快速定位答案,提高正确率。归纳法体现的正是一种猜证结合的思想。归纳法对于解决那些不容易入手或表述复杂的问题十分有效。在这里,专家要特别提醒的是,这种方法只是猜测而不是证明,有时候可能会得出不正确的答案,需要考生多加验证。北师大版小学数学上册知识点总结归纳 小数除法 1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添 0 再继续除。2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数
7、的小数点也向右移动几位(位数不够的,在被除数末尾用 0 补足),然后按照除数是整数的小数除法进行计算。3、连除的算式可以写成被除数除以几个数的积,但除以几个数的积时,必须给这个相乘的式子加上小括号。4、在小数除法中的发现:当除数不为 0 时,除数大于 1 时,商小于被除数。如:3.55=0.7 当除数不为 0 时,除数小于 1 时,商大于被除数。如:3.50.5=7 当除数不为 0 时,除数等于 1 时,商等于被除数。如:3.51=3.5 5、小数除法的验算方法:商除数=被除数(通用)被除数商=除数 6、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的
8、小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来如此类推。7、循环小数:A、小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135 等。B、小数部分的位数是无限的小数,叫做无限小数。如5.37.145145等。C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。(如5.33.123235.7171)D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。(如 5.333的循环节是 3,4.6767的循环节是 67,6.9258258的循环节是 258)E、用
9、简便方法写循环小数的方法:只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点 例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333写作 5.3;有两位小数循环的,就在这两位数字上面,记上小圆点,7.4343写作 7.43;有三位或以上小数循环的,在首位和末位记上小数点,10.732732写作 10.732 8、除法中的变化规律:商不变性质:被除数和除数同时扩大或缩小相同的倍数(0 除外),商不变。除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。9、小数的四则混合运算顺序与整数四则混合运算的运算顺序相同。轴对称和平移 轴对称:1.轴对称图形:如果一个图形沿
10、着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴。两图形重合时互相重合的点叫做对应点,也叫对称点。2.轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴。3.轴对称图形具有对称性。4 轴对称图形的法:(1)找出所给图形的关键点,如图形的顶点、相交点、端点等;(2)数出或量出图形关键点到对称轴的距离;(3)在对称轴的另一侧找出关键点的对称点;(4)按照所给图形的顺序连接各点,就画出所给图形的轴对称图形。平移:1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。2.平移的基本性质:(1)平移不改变图形的形状和大小
11、,只改变图形的位置。(2)经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等。3.平移图形的画法:(1)确定平移的方向与距离。(2)将关键点按所需方向平移所需距离。(3)按原来图形的连接方式依次连接各对应点。4、平移几格并不是指原图形和平移后的新图形之间的空格数,而是指原图形的关键点平移的格数。设计图案的基本方法:平移、对称 1.运用平移设计图案的方法:(1)选好基本图案;(2)根据所选的基本图案确定平移的格数和方向;(3)平移,描出对应点;(4)按顺序连接对应点 2.运用对称设计图案的方法:(1)先选好基本图案;(2)依据基本图案的特点定好对称轴;(3)选好关键点,并描出关键点的
12、对应点;(4)按顺序连接对应点,画出基本图形的对称图形 倍数和因数 像 0,1,2,3,4,5,6,这样的数是自然数。像-3,-2,-1,0,1,2,3,这样的数是整数。我们只在自然数(零除外)范围内研究倍数和因数。倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。补充知识点:一个数的倍数的个数是无限的,因数个数是有限的。一个数最小的因数是 1,最大的因数是它本身;一个数最小的倍数是它本身,没有最大的倍数。(一)2,5 的倍数的特征 2 的倍数的特征:个位上是 0,2,4,6,8 的数是 2 的倍数。5 的倍数的特征:个位上是 0 或 5 的数是 5 的倍数。偶数和奇数的定义:是
13、2 的倍数的数叫偶数,不是 2 的倍数的数叫奇数。补充知识点:既是 2 的倍数,又是 5 的倍数的特征:个位上是 0 的数既是 2 的倍数,又是 5 的倍数。(既是 2 的倍数,又是 5 的倍数都是整十数,最小的两位数是 10,最小的三位数是 100)(二)3 的倍数的特征 一个数各个数位上的数字的和是 3 的倍数,这个数就是 3 的倍数。同时是 2 和 3 的倍数的特征:个位上的数是 0,2,4,6,8,并且各个数位上的数字的和是 3 的倍数的数,既是 2 的倍数,又是 3的倍数。(同时是 2 和 3 的倍数,一定是 6 的倍数,最小的是 6。)同时是 3 和 5 的倍数的特征:个位上的数是
14、 0 或 5,并且各个数位上的数字的和是 3 的倍数的数,既是 3 的倍数,又是 5 的倍数。(同时是 3 和 5 的倍数,一定是 15 的倍数,最小的是 15。)同时是 2,3 和 5 的倍数的特征:个位上的数是 0,并且各个数位上的数字的和是 3 的倍数的数,既是 2 和 5 的倍数,又是 3 的倍数。(同时是 2,3 和 5 的倍数,一定是 30 的倍数,最小的两位数是30,最小的三位数是 120)9 的倍数的特征:一个数各个数位上的数字的和是 9 的倍数,这个数就是 9 的倍数,它也一定是 3 的倍数。找因数 在 1100 的自然数中,找出某个自然数的所有因数。方法:1、运用乘法算式,
15、思考:哪两个数相乘等于这个自然数,那么这两个乘数就是这个数的因数。2、运用除法算式,思考这个数除以几能整除,那么除数和商就是这个数的因数。补充知识点:一个数的因数的个数是有限的。其中最小的因数是 1,最大的因数是它本身。找一个数的因数,通常用列举的方法,可一对一对的写出来,也可按从小到大的顺序来写。找质数 一个数只有 1 和它本身两个因数,这个数叫作质数。一个数除了 1 和它本身以外还有别的因数,这个数叫作合数。1 既不是质数也不是合数。判断一个数是质数还是合数的方法:一般来说,首先可以用“2,5,3 的倍数的特征”判断这个数是否有因数 2,5,3;如果还无法判断,则可以用 7,11 等比较小
16、的质数去试除,看有没有因数 7,11 等。只要找到一个 1 和它本身以外的因数,就能肯定这个数是合数。如果除了 1 和它本身找不到其他因数,这个数就是质数。数的奇偶性 运用“列表”“画示意图”等方法发现规律:小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。通过计算发现奇数、偶数相加奇偶性变化的规律:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数 偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数 奇数-偶数=奇数 偶数偶数=偶数偶数奇数=偶数奇数奇数=奇数 多边形面积 比较图形的面积 借助方格纸,能直接判断图
17、形面积的大小。平面图形面积大小的比较有多种方法:根据图形面积的大小,可以直接进行比较;可以借助参照物进行比较;可以运用重叠的方法进行比较;借助方格,利用数方格的的方法进行比较;直接计算面积后再进行比较等。图形面积相同,其形状可以是不同的。补充知识点:确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子的多少来确定。地毯上的图形面积 知识点:根据地毯上所给图案探求不规则图案面积的计算方法。直接通过数方格的方法,得出答案的面积。将图案进行“化整为零”式的计算,即根据图案的特点,将整体的图案分割为若干个相同面积的小图案,通过求小图案的面积,得出整个图案的面积。采用“大面积减小面积
18、”的方法,即通过计算相关图形的面积,得到所求的面积。补充知识点:在解决问题时,策略和方法是多种多样的。动手做 认识平行四边形、三角形与梯形的底和高。从平行四边形一边的某一点到对边画垂直线段,这条垂直线段就是平行四边形的高,这条对边是平行四边形的底。三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。从梯形的两条平行线中的一条上的某一点到对边画垂直线段,这条垂直线段就是梯形的高,这条对边就是梯形的底。高和底的关系是对应的。用三角板画出平行四边形的高的方法:把三角板的一条直角边与平行四边形的一条边重合,让三角板的另一条直角边过对边的某一点。从这一点沿着三角板的另一条直角边向它的对边
19、画垂线,这条垂线(从点到垂足)就是平行四边形一条边上的高。注意:从一条边上的任意一点可以向它的对边画高,也可以从另一条边上的任意一点向它的对边画高。用三角板画出三角形的高的方法:把三角板的一条直角边对准三角形的一个顶点,另一条直角边与这个顶点的对边重合。从这个顶点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从顶点到垂足)就是三角形形一条边上的高。用三角板画梯形的高的方法:用同样的方法,画出梯形两条平行线之间的垂直线段,就是梯形的高。(一)平行四边形的面积 平行四边形的面积=拼成的长方形的面积 长方形的长就是平行四边形的底;长方形的宽就是平行四边形的高。因此:平行四边形面积=底高 如果用
20、 S 表示平行四边形的面积,用 a 和 h 分别表示平行四边形的底和高,那么,平行四边形的面积公式可以写成:S=ah 补充知识点:当平行四边形的底和高相同时,其面积也是相同的。(二)三角形的面积 三角形面积=两个相同三角形拼成的平行四边形的面积2 三角形的底和高,也就是平行四边形的底和高。因此:三角形面积=平行四边形的面积2=底高2 如果用 S 表示三角形的面积,用 a 和 h 分别表示三角形的底和高,那么,三角形的面积公式可以写成:S=ah2 补充知识点:决定三角形面积的大小的因素不是图形的形状,而是三角形的底与高的长度,只要底和高相同,不同形状的三角形的面积也是相同的。(三)梯形的面积 梯
21、形面积=两个相同梯形拼成的平行四边形的面积2 梯形的上底与下底的和就是平行四边形的底,梯形的高就是平行四边形的高。因此:梯形面积=平行四边形面积2=底高2=(上底+下底)高2 如果用 S 表示梯形的面积,用 a 和 b 分别表示梯形的上底和下底,用 h 表示梯形的高,那么,梯形的面积公式可以写成:S=(a+b)h2 补充知识点:决定梯形面积的大小的因素不是图形的形状,而是梯形的上、下底之和与高的长度,只要上下底的和与高相同,不同形状的梯形的面积也是相同的。等底等高的三角形的面积相等。等底等高的平行四边形的面积相等。分数的意义 分数的再认识 整体“1”的含义:一个物体或一些物体都可以看作一个整体
22、,这个整体可以用自然数“1”来表示,通常叫做整体“1”。分数的意义:把整体“1”平均分成若干份,其中的一份或几份,可以用分数表示。分母是几,整体就被分成了几份,分子是几,就表示其中的几份。分数对应的“整体”不同,分数所表示的部分的大小或具体数量也不一样,即分数具有相对性。同一个分数对应的整体大,表示的具体数量就大;对应的整体小,表示的具体数量就小。同一个分数表示的具体数量大,对应的整体就大;表示的具体数量小,对应的整体就小。(真分数与假分数)理解真分数、假分数、带分数的意义。像、,这样的分数叫作真分数。特点:分子都比分母小;分数值小于 1。像、,这样的分数叫作假分数。特点:分子比分母大,或者分
23、子与分母相等;分数值大于或等于 1。像,这样的分数叫作带分数。特点:由整数和真分数两部分组成的;分数值大于 1。带分数的读法:读作:二又四分之一。补充知识点:分子是分母倍数的假分数可以化成整数;分子不是分母倍数的假分数可以化成带分数。分数与除法 理解分数与除法的关系:被除数除数=(除数不为 0)。分数的分母不能是 0。因为在除法中,0 不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是 0。可以用分数来表示两数相除的商。分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号,分数的值相当于商。根据分数与除法的关系把假分数化成带分数的方法:用分子除以
24、分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。把带分数化成假分数的方法:将整数与分母相乘的积加上原来的分子作分子,分母不变。分数基本性质 分数的分子和分母都乘上或除以相同的数(0 除外),分数的大小不变。分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0 除外),商不变。因此分数的分子和分母都乘或除以相同的数(0 除外),分数的大小也是不变的。求一个数是另一个数的几分之几:一个数另一个数=,即比较量标准量=,得到的商表示两个数的关系,没有单位名称。找最大公因数 几个数公有的因数是这几个数的公因数,其中最大的一个是它们的最大公因数。找
25、两个数的公因数和最大公因数的方法:列举法:运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。补充知识点:其他找最大公因数的方法:找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。其中最大的就是这两个数的最大公因数。例如:找15 和 50 的公因数和最大公因数:可以先找出 15 的因数:1,3,5,15。再判断 4 个数中,哪几个也是 50 的因数,只有 1 和 5,1 和 5 就是 15 和 50 的
26、公因数。5 就是它们的最大公因数。3、如果两个数是不同的质数,那么这两个数的公因数只有 1。4、如果两个数是连续的自然数(0 除外),那么这两个数的公因数只有 1。5、如果两个数具有倍数关系,那么较小的数就是这两个数的最大公因数。约分 把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。理解最简分数的含义:像这样分子、分母公因数只有 1 了,不能再约分了,这样的分数是最简分数。分子与分母是相邻的自然数的分数一定是最简分数;分子分母是两个不同质数的分数一定是最简分数;分子是“1”的分数一定是最简分数。掌握约分的方法:约分的方法一般有两种,一种是用两个数的公因数一个一个去除,另一
27、种是直接用两个数的最大公因数去除。补充知识点:比较分数大小时,分母相同的、分子相同的可以直接比较,有些时候分子分母都不相同可以采用约分后进行比较的方法。例如:找最小公倍数 两个数公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。找两个数的公倍数和最小公倍数的方法:1、先找出两个数各自的倍数(限制一定的范围内),再找出公有的倍数,找出两个数公有的倍数,看看这些公倍数中最小的是几,这个数就是两个数的最小公倍数。两个数公倍数的个数是无限的,因此只有最小公倍数没有最大的公倍数。补充知识点:其他找公倍数和最小公倍数的方法:2、找两个数的公倍数和最小公倍数,可以先找出两个数中较大的数的倍数(
28、限制一定的范围内),再看看这些倍数中有哪些也是较小的数的倍数,那么这些数就是这两个数的公倍数。其中最小的就是这两个数的最小公倍数。例如:找 6 和 9 的公倍数和最小公倍数。(50 以内)可以先找出 9的倍数(50 以内)有:9,18,27,36,45,再从这些数中找出 6 的倍数 18,36,18 和 36 就是 6 和 9 的公倍数,18 是最小公倍数。3、如果两个数是不同的质数,那么这两个数的最小公倍数是两个数的乘积。4、如果两个数是连续的自然数(0 除外),那么这两个数的最小公倍数是两个数的乘积。5、如果两个数具有倍数关系,那么较大的数就是这两个数的最小公倍数。6、短除法求最小公倍数
29、分数的大小 把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫作通分。通分的两个要点:和原来分数相等;分母相同。分数大小比较:同分母分数相比较,分子越大分数越大。同分子分数相比较,分母越小分数越大。分子分母都不相同的分数相比较的方法:用通分的方法把分母不相同的分数化成和原来分数相等、并且分母相同的分数,再比较大小。(把两个分数化成分子相同的分数,再比较大小)补充知识点:通分一般以最小公倍数作分母。组合图形的面积 组合图形面积 知识点:了解组合图形:有几个简单的图形拼出来的图形,我们把它们叫做组合图形。计算组合图形的面积的方法是多种多样的。一般运用的方法是“分割法”和“添补法”
30、。分割法,即将这个图形分割成几个基本的图形。分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条件的关系。添补法,即通过补上一个简单的图形,使整个图形变成一个大的规则图形。探索活动:成长的脚印 知识点:能正确估计不规则图形面积的大小。能用数格子的方法,计算不规则图形的面积。估计、计算不规则图形面积的内容主要是以方格图作为背景进行估计与计算的,所以借助方格图能帮助建立估计与计算不规则图形面积的方法。数方格的方法:满格记为 1,少于半格记为 0,大于半格记为 1。尝试与猜测 鸡兔同笼知识点:运用列表的方法(逐一列表法、跳跃列表法、折中列表法)解决类似于“鸡兔同笼”的问题,也可用“
31、方程”来解决。点阵中的规律知识点:能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。在“点阵中的规律”的活动中,通过观察前后图形中点的变化规律,推理出后续图形中点的数量。可能性 1、判断游戏是否公平,要看事件发生的可能性是否相等。2、摸球游戏(用分数表示可能性的大小)(1)通过游戏所列的条件,推测某种情况出现的概率;(2)能判断事件发生可能性的大小,写出所有可能发生的情况,推测可能发生的结果。知识点:用分数表示可能性的大小。客观事件中,“不可能”出现的现象用数据表示为“可能性是0”,客观事件中,“一定能”出现的现象用数据表示为“可能性是“1”,当可能性是相等的时候,用数据表述是“”。逐步体会到数据表示的简洁性与客观性。