高考文科数学复习第一轮___极坐标与参数方程(修改版).doc

上传人:asd****56 文档编号:79330092 上传时间:2023-03-21 格式:DOC 页数:54 大小:1.82MB
返回 下载 相关 举报
高考文科数学复习第一轮___极坐标与参数方程(修改版).doc_第1页
第1页 / 共54页
高考文科数学复习第一轮___极坐标与参数方程(修改版).doc_第2页
第2页 / 共54页
点击查看更多>>
资源描述

《高考文科数学复习第一轮___极坐标与参数方程(修改版).doc》由会员分享,可在线阅读,更多相关《高考文科数学复习第一轮___极坐标与参数方程(修改版).doc(54页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高考文科数学一轮复习(极坐标与参数方程) 第二讲 极坐标与参数方程目标认知考试大纲要求:1. 理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2. 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化;3. 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义;4. 了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别;5. 了解参

2、数方程,了解参数的意义,能选择适当的参数写出直线、圆和圆锥曲线的参数方程;6. 了解平摆线、渐开线的生成过程,并能推导出它们的参数方程,了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用。重点、难点:1理解参数方程的概念,了解常用参数方程中参数的意义,掌握参数方程与普通方程的互化。2理解极坐标的概念,掌握极坐标与直角坐标的互化;直线和圆的极坐标方程。【知识要点梳理】:知识点一:极坐标1极坐标系平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。2极坐标系内一点的极坐标平面上一点到极点的距离称为极

3、径,与轴的夹角称为极角,有序实数对就叫做点的极坐标。(1)一般情况下,不特别加以说明时表示非负数; 当时表示极点; 当时,点的位置这样确定:作射线, 使,在的反向延长线上取一点,使得,点即为所求的点。(2)点与点()所表示的是同一个点,即角与的终边是相同的。 综上所述,在极坐标系中,点与其点的极坐标之间不是一一对应而是一对多的对应, 即,, 均表示同一个点.3. 极坐标与直角坐标的互化 当极坐标系与直角坐标系在特定条件下(极点与原点重合;极轴与轴正半轴重合;长度单位相同),平面上一个点的极坐标和直角坐标有如下关系:直角坐标化极坐标:;极坐标化直角坐标:.此即在两个坐标系下,同一个点的两种坐标间

4、的互化关系.4. 直线的极坐标方程:(1)过极点倾斜角为的直线:或写成及.(2)过垂直于极轴的直线:5. 圆的极坐标方程:(1)以极点为圆心,为半径的圆:.(2)若,以为直径的圆:知识点二:参数方程1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。知识点四:常见曲线的参数方程1直线的参数方程(1)经过定点,倾斜角为的直线的参数方程为: (为参数);

5、其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。(当在上方时,在下方时,)。 (2)过定点,且其斜率为的直线的参数方程为: (为参数,为为常数,);其中的几何意义为:若是直线上一点,则。2圆的参数方程(1)已知圆心为,半径为的圆的参数方程为: (是参数,); 特别地当圆心在原点时,其参数方程为(是参数)。(2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。 (3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。3. 椭圆的参数方程(1)椭圆()的参数方程(为参数)。(2)参数的几何意义是椭圆

6、上某一点的离心角。 如图中,点对应的角为(过作轴, 交大圆即以为直径的圆于),切不可认为是。(3)从数的角度理解,椭圆的参数方程实际上是关于椭圆的一组三角代换。 椭圆上任意一点可设成, 为解决有关椭圆问题提供了一条新的途径。4. 双曲线的参数方程双曲线(,)的参数方程为(为参数)。5. 抛物线的参数方程抛物线()的参数方程为(是参数)。参数的几何意义为:抛物线上一点与其顶点连线的斜率的倒数,即。规律方法指导:1、把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法. 常见的消参方法有:代入消法 ;加减消参;平方和(差)消参法;乘法消参法;比值消参法;利用恒等式消参法;混合消参法等.2

7、、把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性, 注意方程中的参数的变化范围。【经典例题精析】类型一:极坐标方程与直角坐标方程1在极坐标系中,点关于极点的对称点的坐标是_ ,关于极轴的对称点的坐标是_,关于直线的对称点的坐标是_,思路点拨:画出极坐标系,结合图形容易确定。解析:它们依次是或;(). 示意图如下:总结升华:应用数形结合,抓住对称点与已知点之间的极径与极角的联系,同时应注意点的极坐标的多值性。2.化下列极坐标方程为直角坐标方程,并说明它是什么曲线。(1) ; (2) ;思路点拨:依据关系式,对已有方程进行变形、配凑。解析:(1)方程变形为, 或

8、,即或, 故原方程表示圆心在原点半径分别为1和4的两个圆。(2) 变形得,即, 故原方程表示直线。总结升华:极坐标方程化为直角坐标方程,关键是依据关系式,把极坐标方程中的用、表示。类型二:参数方程与普通方程互化4把参数方程化为普通方程(1) (,为参数);(2)(,为参数); 思路点拨:(1)将第二个式子变形后,把第一个式子代入消参;(2)利用三角恒等式进行消参;(3)观察式子的结构,注意到两式中分子分母的结构特点,因而可以采取加减消参的办法;或把用表示,反解出后再代入另一表达式即可消参;(4)此题是(3)题的变式,仅仅是把换成而已,因而消参方法依旧,但需要注意、的范围。解析:(1),把代入得

9、;又 , , 所求方程为:(,)(2),把代入得. 又, ,. 所求方程为(,).总结升华:1. 消参的方法主要有代入消参,加减消参,比值消参,平方消参,利用恒等式消参等。2.消参过程中应注意等价性,即应考虑变量的取值范围,一般来说应分别给出、的范围.在这过程中实际上是求函数值域的过程,因而可以综合运用求值域的各种方法.【课堂检测】选择题参在极坐标系中,点(,)与(-, -)的位置关系为( )。 A关于极轴所在直线对称 B关于极点对称 C关于直线= (R) 对称 D重合极坐标方程 4sin2=5 表示的曲线是( )。 A圆 B椭圆 C双曲线的一支 D抛物线点 P1(1,1) 与 P2(2,2)

10、 满足1 +2=0,1 +2 = 2,则 P1、P2 两点的位置关系是( )。 A关于极轴所在直线对称 B关于极点对称 C关于=所在直线对称 D重合椭圆的两个焦点坐标是( )。 A(-3, 5),(-3, -3) B(3, 3),(3, -5) C(1, 1),(-7, 1) D(7, -1),(-1, -1)六、1若直线的参数方程为,则直线的斜率为( )A BC D2下列在曲线上的点是( )A B C D 3将参数方程化为普通方程为( )A B C D 4化极坐标方程为直角坐标方程为( )A B C D 5点的直角坐标是,则点的极坐标为( )A B C D 6极坐标方程表示的曲线为( )A一

11、条射线和一个圆 B两条直线 C一条直线和一个圆 D一个圆七、1直线的参数方程为,上的点对应的参数是,则点与之间的距离是( )A B C D 2参数方程为表示的曲线是( )A一条直线 B两条直线 C一条射线 D两条射线3直线和圆交于两点,则的中点坐标为( )A B C D 4圆的圆心坐标是( )A B C D 5与参数方程为等价的普通方程为( )A B C D 6直线被圆所截得的弦长为( )A B C D 八、1把方程化为以参数的参数方程是( )A B C D 2曲线与坐标轴的交点是( )A B C D 3直线被圆截得的弦长为( )A B C D 4若点在以点为焦点的抛物线上,则等于( )A B

12、 C D 5极坐标方程表示的曲线为( )A极点 B极轴 C一条直线 D两条相交直线6在极坐标系中与圆相切的一条直线的方程为( )A B C D填空题参、把参数方程(为参数)化为普通方程,结果是。把直角坐标系的原点作为极点,x 的正半轴作为极轴,并且在两种坐标系中取相同的长度单位,若曲线的极坐标方程是,则它的直角坐标方程是。六、1直线的斜率为_。2参数方程的普通方程为_。3已知直线与直线相交于点,又点,则_。4直线被圆截得的弦长为_。5直线的极坐标方程为_。七、1曲线的参数方程是,则它的普通方程为_。2直线过定点_。3点是椭圆上的一个动点,则的最大值为_。4曲线的极坐标方程为,则曲线的直角坐标方

13、程为_。5设则圆的参数方程为_。八、1已知曲线上的两点对应的参数分别为,那么=_。2直线上与点的距离等于的点的坐标是_。3圆的参数方程为,则此圆的半径为_。4极坐标方程分别为与的两个圆的圆心距为_。5直线与圆相切,则_。解答题参、如图,过点M (-2, 0) 的直线依次与圆(x +)2 + y2 = 16和抛物线 y2 = - 4x 交于A、B、C、D 四点,且|AB| = |CD|,求直线的方程。过点 P(-2, 0) 的直线与抛物线 y2 = 4x 相交所得弦长为8,求直线的方程。求直线 ( t 为参数)被抛物线 y2 = 16x 截得的线段AB 中点 M 的坐标及点 P(-1, -2)

14、到 M 的距离。A为椭圆+=1上任一点,B为圆( x - 1)2 + y 2= 1 上任一点,求 | AB | 的最大值和最小值 。A、B在椭圆+= 1(a b 0)上,OAOB,求AOB面积的最大值和最小值。椭圆+=1(a b 0)的右顶点为A,中心为O,若椭圆在第 一象限的弧上存在点P,使OPA=90,求离心率的范围。一1、求圆心为C,半径为3的圆的极坐标方程。2、已知直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程。(2)设l与圆相交与两点A、B,求点P到A、B两点的距离之积。3、求椭圆。三、18四、14设椭圆4x2+y2=1的平行弦的斜率为2,求这组平行弦中点的轨迹五、19

15、的底边以B点为极点,BC 为极轴,求顶点A 的轨迹方程。20在平面直角坐标系中已知点A(3,0),P是圆珠笔上一个运点,且的平分线交PA于Q点,求Q 点的轨迹的极坐标方程。六1已知点是圆上的动点,(1)求的取值范围;(2)若恒成立,求实数的取值范围。2求直线和直线的交点的坐标,及点与的距离。3在椭圆上找一点,使这一点到直线的距离的最小值。七、1参数方程表示什么曲线?2点在椭圆上,求点到直线的最大距离和最小距离。3已知直线经过点,倾斜角,(1)写出直线的参数方程。(2)设与圆相交与两点,求点到两点的距离之积。八、1分别在下列两种情况下,把参数方程化为普通方程:(1)为参数,为常数;(2)为参数,

16、为常数;2过点作倾斜角为的直线与曲线交于点,求的最小值及相应的的值。参 数 方 程 集 中 训 练 题 型 大 全 答案 田硕 A 【习题分析】与点M(,)关于极轴对称的点有(,-)或(-,-),关于=所在直线对称的点有(-,-)或(,-),关于极点对称的点有(-,)或(,+)。掌握好点与极坐标的对应关系,及点之间特殊的对称关系是很有用处的。D【习题分析】 化为4P=5。即=,表示抛物线,应选D。判断曲线类型一般不外乎直线、圆、圆锥曲线等,因此需化为相应方程即可。C【习题分析】点 P2 坐标为(-1, 2-1)也即为(1, 3-1),点P1、P2关于=所在直线对称,应选C。 判断点的对称,应记

17、忆好相应坐标之间的关系,必要时可结合图形。B 【习题分析】先将椭圆方程化为普通方程,得: +=1。然后由平移公式。及在新系中焦点(0, 4)可得答案,应选B。【填空】x2+(y-1) 2=1【习题分析】将原方程变形为,两边相加即可得x2 + (y - 1)2 =1。3x2-y2=1【习题分析】原方程可化为 42cos2-2 =1。将cos= x, p2 = x2 + y2 代入上式,得 4x2 - x2 - y2 = 1,即 3x2 - y2 = 1。【计算】x=-2或2x-y+4=0或2x=y=4=0【习题分析】设直线的参数方程为(t 为参数) 代入圆的方程和抛物线的方程,化简并利用| AB

18、 | = | CD | tA + tD = tC + tB, 根据韦达定理可迅速获解。 【习题分析】设: ( t 为参数),为直线的倾角,代入抛物线方程整理得: 2sin2 - (4cos) t + 8 = 0由韦达定理得 t1 + t2 = t1t2 =。弦长| t1 - t2 | = 8,整理得 4sin4+ 3sin2-1 = 0 解得 sin2= sin= 0 =或 即所求直线的方程为 y = (x + 2),【习题分析】不能把原参数方程直接代入 y = 16x2 中,因为原参数不是 标准式,不具有几何意义,在求 | PM | 时不用两点间距离 公式,而用参数的几何意义直接得出。 因而

19、解本题用到两个结论:1 弦的中点对应参数为: t =,2 点P(直线经过的定点)到弦中点M的距离|PM=|【习题分析】由+y2=1有P(2cos,sin),则2x+y=4cos+sin= sin(+)(tan= 4), (2x + y)大=。若已知椭圆(圆或双曲线)上一点,用参数方程来设坐标较方便,用此法可以解决 Ax + By 型的最值问题。7,【习题分析】圆心C(1,0),求|AB|的最值,只需求AC的最值,设A(5cos,3sin) 用两点间距离公式求解|AC|。解决本题的关键在于将圆上的动点B转化到定点圆心C。,【习题分析】从椭圆中心(抛物线顶点)出发的线段长有关的问题,可将 直接代入

20、普通方程,转化为极坐标方程, 设A( 1,),B(2,)则有 SAOB=| 12 | 进一步处理。 e1【习题分析】设 P(acos, bsin)(0 90),OPA=90有= -1 (a2-b2)cos2- acos2+ b2=0解得 cos=或cos=1(舍)。当1,即 a b,也即e b 0)上,OAOB,求AOB面积的最大值和最小值。椭圆+=1(a b 0)的右顶点为A,中心为O,若椭圆在第 一象限的弧上存在点P,使OPA=90,求离心率的范围。一1、求圆心为C,半径为3的圆的极坐标方程。2、已知直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程。(2)设l与圆相交与两点A、

21、B,求点P到A、B两点的距离之积。3、求椭圆。三、18四、14设椭圆4x2+y2=1的平行弦的斜率为2,求这组平行弦中点的轨迹五、19的底边以B点为极点,BC 为极轴,求顶点A 的轨迹方程。20在平面直角坐标系中已知点A(3,0),P是圆珠笔上一个运点,且的平分线交PA于Q点,求Q 点的轨迹的极坐标方程。六1已知点是圆上的动点,(1)求的取值范围;(2)若恒成立,求实数的取值范围。2求直线和直线的交点的坐标,及点与的距离。3在椭圆上找一点,使这一点到直线的距离的最小值。七、1参数方程表示什么曲线?2点在椭圆上,求点到直线的最大距离和最小距离。3已知直线经过点,倾斜角,(1)写出直线的参数方程。

22、(2)设与圆相交与两点,求点到两点的距离之积。八、1分别在下列两种情况下,把参数方程化为普通方程:(1)为参数,为常数;(2)为参数,为常数;2过点作倾斜角为的直线与曲线交于点,求的最小值及相应的的值。参 数 方 程 集 中 训 练 题 型 大 全 答案 田硕 A 【习题分析】与点M(,)关于极轴对称的点有(,-)或(-,-),关于=所在直线对称的点有(-,-)或(,-),关于极点对称的点有(-,)或(,+)。掌握好点与极坐标的对应关系,及点之间特殊的对称关系是很有用处的。D【习题分析】 化为4P=5。即=,表示抛物线,应选D。判断曲线类型一般不外乎直线、圆、圆锥曲线等,因此需化为相应方程即可

23、。C【习题分析】点 P2 坐标为(-1, 2-1)也即为(1, 3-1),点P1、P2关于=所在直线对称,应选C。 判断点的对称,应记忆好相应坐标之间的关系,必要时可结合图形。B 【习题分析】先将椭圆方程化为普通方程,得: +=1。然后由平移公式。及在新系中焦点(0, 4)可得答案,应选B。【填空】x2+(y-1) 2=1【习题分析】将原方程变形为,两边相加即可得x2 + (y - 1)2 =1。3x2-y2=1【习题分析】原方程可化为 42cos2-2 =1。将cos= x, p2 = x2 + y2 代入上式,得 4x2 - x2 - y2 = 1,即 3x2 - y2 = 1。【计算】x

24、=-2或2x-y+4=0或2x=y=4=0【习题分析】设直线的参数方程为(t 为参数) 代入圆的方程和抛物线的方程,化简并利用| AB | = | CD | tA + tD = tC + tB, 根据韦达定理可迅速获解。 【习题分析】设: ( t 为参数),为直线的倾角,代入抛物线方程整理得: 2sin2 - (4cos) t + 8 = 0由韦达定理得 t1 + t2 = t1t2 =。弦长| t1 - t2 | = 8,整理得 4sin4+ 3sin2-1 = 0 解得 sin2= sin= 0 =或 即所求直线的方程为 y = (x + 2),【习题分析】不能把原参数方程直接代入 y =

25、 16x2 中,因为原参数不是 标准式,不具有几何意义,在求 | PM | 时不用两点间距离 公式,而用参数的几何意义直接得出。 因而解本题用到两个结论:1 弦的中点对应参数为: t =,2 点P(直线经过的定点)到弦中点M的距离|PM=|【习题分析】由+y2=1有P(2cos,sin),则2x+y=4cos+sin= sin(+)(tan= 4), (2x + y)大=。若已知椭圆(圆或双曲线)上一点,用参数方程来设坐标较方便,用此法可以解决 Ax + By 型的最值问题。7,【习题分析】圆心C(1,0),求|AB|的最值,只需求AC的最值,设A(5cos,3sin) 用两点间距离公式求解|AC|。解决本题的关键在于将圆上的动点B转化到定点圆心C。,【习题分析】从椭圆中心(抛物线顶点)出发的线段长有关的问题,可将 直接代入普通方程,转化为极坐标方程, 设A( 1,),B(2,)则有 SAOB=| 12 | 进一步处理。 e1【习题分析】设 P(acos, bsin)(0

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁