《汽轮发电机组振动及事故节选资料解读12112.pdf》由会员分享,可在线阅读,更多相关《汽轮发电机组振动及事故节选资料解读12112.pdf(157页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章 振动故障诊断 振动故障诊断这一名称国外早在 40 多年前就已提出,但由于当时测试技术和振动故障特征知识的不足,所以这项技术在 70 年代前未有明显发展。我国提出振动故障诊断也有20 多年的历史,由于国内机组振动的特殊性,因而在振动故障诊断方法,故障机理研究方面,具有独特的见解,经过 40 多年现场故障诊断的实践,在机组振动故障特征方面我们积累了丰富的知识,已扭转了振动故障原因难于查明的局面。故障诊断从目的来分,可分为在线诊断和离线诊断,前者是对运行状态下的机组振动故障原因作出粗线条的诊断,以便运行人员作出纠正性操作,防止事故扩大,因此诊断时间上要求很紧迫,目前采用计算机实现,故又称自动
2、诊断系统。系统的核心是专家经验,但是如何将分散的专家经验系统化和条理化,变成计算机的语言,是目前国内外许多专家正在研究的一个问题,因此不能将这种诊断系统误解为能替代振动专家,即使将来,也是振动专家设计和制造诊断系统,为缺乏振动知识和经验的运行人员服务,而不是替代振动专家的作用。离线诊断是为了消除振动故障而进行的诊断,这种诊断在时间要求上不那么紧迫,可以将振动信号、数据拿出现场,进行仔细地分析,讨论或模拟试验,因此称它为离线诊断。在故障诊断深入程度上要比在线诊断具体得多,因此难度大,本章要讨论的是离线故障诊断技术。第一节 机组振动故障诊断的思路和方法 2.1.1直观寻找振动故障 2.1.1.1振
3、动故障直观可见性 由于是采用肉眼或一般的测量直观去寻找,因此能找到的振动故障必然是直观可见的故障,例如轴承座松动、台板接触不好、转子上存在自由活动部件等,对于直观不能发现的故障,例如转子不平衡,系统共振,汽轮发电机转子存在热弯曲等故障,即使多次寻找,也无法查明。2.1.1.2发现故障的偶然性 即使对于直观可见的故障,也不是通过 1 2 次解体检查就能发现的,这是由于寻找本身带有较大的盲目性,因此能发现故障往往带有较大的偶然性,例如某厂一台国产 100MW机组,新机启动发生发生 2、3 瓦振动大,经两次揭缸检查,都未能找到故障原因,而且经多次启停观察振动,都不能解说其故障原因,正在一筹莫展之际,
4、一个运行人员无意间用听棒在 2、3 瓦之间听到异音,再次揭缸才发现高压转子 4 公斤重的中心孔堵头脱落掉在波形节联轴器内。2.1.1.3设备结构和故障机理的复杂性 显然对于结构和故障机理简单的回转机械,例如风机、水泵、一般电动机等,采用解体直观寻找振动故障成功率较高,但是对于结构复杂,特别是大型汽轮发电机组,不仅零部件大而多、结构复杂,而且引起振动的机理也很复杂,一次解体寻找振动故障不可能对机组每一个部件都做仔细检查,即使是直观可见的振动故障,在一次解体寻找中也未必能发现,因此直观寻找在大机组上成功率往往是很低的。2.1.2振动原因分析寻找 2.1.3振动故障诊断 故障诊断与上述查明故障的方法
5、最大区别是摆脱了振动故障以眼见为实的局限性,它是采用演绎推理的方法,以故障特征为基础,与振动特征进行比较、分析,或采用逐个排除的方法,对振动性质、故障原因和具体部件作出判断。2.1.3.1反向推理 反向推理也称目标直接推理,它是依据振动特征反推出振动故障原因,因此称它反向推理。在推理过程中只与单一的目标有关,当振动特征与故障特征符合时,即可做出诊断。故障特征是指前人或个人在以往工作中经归纳总结得到具体的、明确的故障所呈现的振动现象和特点;振动特征是指要诊断的机组振动,经调查、测试、分析后归纳得出的振动现象和征兆。例如柔性转子存在一阶不平衡,在一阶临界转速下轴承或转轴振动必然会呈现显著峰值,则其
6、故障特征是转子一阶不平衡,在一阶临界转速下发生强烈震动,则启动中一阶临界转速下强烈振动即为振动特征,若采用反向推理,即可做出该机组一阶临界转速下,强烈振动故障原因是转子存在一阶不平衡的诊断。使用反向推理不需要了解故障范围,而只要对有关的故障特征有所了解,即可进行诊断,因此目前国内这种诊断方法应用相当广泛,而且国内外在线诊断目前主要也是采用这种推理方法。由于反向推理诊断故障容易掌握,所以目前已获得广泛应用,但是在实际诊断振动故障时往往会发生下列弊病。1.诊断结果不肯定 机组绝大多数振动故障特征有多方面的反映,不同的故障其特征存在着显著的交叉,例如转子不平衡过大,引起的是基频振动过大;同样支撑动刚
7、度不足,轴系连接同心度、平直度偏差等故障,也是基频振动过大,也就是说故障和特征之间不是一一对应关系,而是多重交叉关系,而且一种故障在特征上有多方面的反映,就拿最简单的振动故障转子不平衡来说,它可以在升速过程中发生振动过大,但也有不大的,而只是在工作转速下振动大;有时则相反。从而依据振动特征反推故障,必然会得出几种不肯定的诊断结果,这就是目前一般都习惯采用的:可能是某种原因,或大概是某种原因。得出这种不肯定的诊断结果,从方法上来说是采用了反向推理的必然结果。但从主观上来说,做出这种诊断是事先给自己留好退路,因此严格的说,这是一种不负责任的诊断。2.产生漏诊断和误诊断 由于故障和特征之间不是一一对
8、应的关系,一种故障在特征上有多重反映,不同的故障特征相互交叉等原因,在诊断的反向推理过程中,不仅可能会得出错误的诊断,而且还会漏掉真正引起振动的故障。出现漏诊断和误诊断几率虽然与本人对故障特征和振动特征认识广度和深度直接有关,但从诊断方法来说这种现象是难于避免的。目前在实际振动故障诊断中,为了避免漏诊断,往往采取不惜误诊断的一种错误做法,将一台机组振动说成是多种故障原因的综合反映,为此对一台机组振动故障诊断往往提出4-5个或更多的可能原因,而且各个原因之间往往互不相干。但现场绝大部分实际机组振动的故障原因是 1-2个,而且这些故障原因是相互密切相关的。由现场消振经验证明,当故障诊断准确率为 2
9、0-30时,虽然有一定的参考价值,但它的误导作用影响太大,会对消振带来极为不利的影响。所谓故障诊断准确率,是指实际故障与诊断故障的符合程度,例如实际故障是一个,诊断出三个可能原因,其中一个符合,则其准确率为 33%;又如实际故障是两个,诊断出三个,但一个也不符合,其准确率为零。振动故障诊断的实际价值是用来指导消振工作,因此故障诊断应在消振之前作出,但目前在一些文献中见到的振动故障诊断,实际是在消振之后作出的,这种总结分析对于提高今后故障诊断的认识是有必要的,但是对于消除这台机组的振动来说,已是多余的了。从这些资料统计来看,其诊断的准确率大部分为 30%左右,有些更低。如果拿当时的原始诊断来说,
10、其准确率远低于 30%。2.1.3.2 正向推理 使用正向推理诊断故障的前提,是振动故障范围必须明确,具体推理方法是在能够引起机组振动的全部原因(称故障总目录)中与实际机组存在的振动特征、故障历史、进行搜索、比较、分析、采取逐个排除的方法剩下不能排除的故障即为诊断结果-某种故障不能排除。这一诊断结果包含两层含义,一层是当只有一个故障不能排除时,它是引起振动故障的原因;另一层含义是当还剩下两个以上故障不能排除时,这些故障都是振动的可能原因,需要进一步做工作,排除其中无关的故障。显然正向推理在排除和不能排除的故障比较中,也采用了反向推理,但是这种反向推理是在故障范围明确的前提下采用排除方法,因此思
11、维方式上要比反向推理得直接诊断故障起来严密的多,由此可以获得很高的诊断严密性和诊断的准确率,基本上可以避免采用反向推理诊断故障所出现的陋诊断和误诊断的结果,但是要取得较高的诊断准确率和肯定的诊断结果,应掌握以下要点。1.振动故障范围 这是采正向推理的大前提,在数学上称作边界条件,应明确,对机组振动故障诊断来说,应明确机组振动到底存在哪些故障及其相应特征,这显然是一个非常复杂和涉及面很广的问题,而且即使列全了机组振动的所有故障及其特征,在实际诊断时如何查找和记住这些特征,也将十分困难,况且前人还没有提供这些资料,所以在以往故障诊断中没有采用正向推理的。经现场 40 多年故障诊断的实践、总结、归纳
12、,目前已经明确了机组振动故障总目录、分目录及其相应的故障特征,为使诊断方便和实用,对于这些振动故障分类方法也进行较深入的研究。机组振动故障总目录、各类故障分目录及其特征、分类方法,这是本章讨论的主要内容,为采用正向推理诊断故障奠定了基础。2.分层次诊断 在正向推理中采用分层次是能获得严密和可靠诊断的一种有效思维方式。所谓分层次,具体是指先大范围,后小范围,再具体到某一种故障和某一个部件。大范围故障划分方法见本章第二、三两节,小范围和具体故障划分方法见本章第四至十六节。在每一层次上诊断首先要明确这一层的故障范围及其相应的故障特征、机理,在对机组振动特征已全面和深入了解的基础上,做严密推理,才能获
13、得可靠和肯定的诊断。3.故障特征和故障机理 直观寻找和分析寻找振动故障的基础,是眼见为实;推理诊断振动故障的基础是故障特征和故障机理,前者是直观可见的,后者是抽象的。上述已经指出,由于故障和特征之间不是一一对应的关系,不同的故障特征的相互交叉,造成反向推理诊断结果不肯定和误诊断,克服这一缺点的有效措施,一是采用正向推理;二是明了故障机理,通过故障机理的分析,若不能解说故障特征多重性和相互的交叉现象及故障形成史,也可排除特征相似但实际与发生振动无关的故障。若是同时存在两个以上故障时,应说明各个故障之间的相互关系,及各个故障在振动中所占的相对量值,这样才能保证诊断结果的准确性,以及消振对策切实有效
14、。为此本章在介绍各种故障特征的同时,还着重阐述了故障机理。4.振动特征和振动机理 如果说掌握故障特征和故障机理是获得正确诊断结果的先决条件,那么正确获取机组振动特征和振动机理,是获取准确必要条件,若采用正向推理,首先应全面地获取振动特征及其历史,查明振动机理,只有这样才能排除所有的无关故障,获得肯定的诊断,本章将具体介绍如何尽快地、正确地获取机组振动特征的方法和经验,这是采用正向推理的依据。在偏离振动特征,或在不可靠的振动特征基础上所做的推理,只能是直观想像凭空的推测,不能称为故障诊断。正确具体的推理步骤的归纳,可参考本章第十七节诊断实例一至四。这里应说明,在目前振动故障诊断中,常常将某些与振
15、动特征不符的故障首先排除,这种排除法从形式上来说与正向推理中逐个排除故障的方法相似,但它是在故障范围没有确定的前提下所做的推理,诊断的结果只能缩小怀疑面,而最终仍不能获得肯定的诊断结果,因此仍属反向推理范畴。2.1.4 目前振动故障诊断准确率低的原因 我国振动故障诊断早在 1982年已提出,是各种故障诊断中最早提出的,至今虽然只有十多年的历史,但在全国各地已得到了不同程度的普及。不过前面已经指出,其故障诊断的准确率还是很低的。下面进一步讨论目前故障诊断准确率低的主要原因。2.1.4.1 注意力集中在直观可见故障上 机组一旦发生振动,尽管还没有开始寻找振动故障,但往往将注意力集中到机组已发现的一
16、些故障上,实际上这些可见故障有些与振动有关,有些与振动无关,而且引起振动的真正故障原因可能还未发现和认识到,因为引起振动的许多故障一般是十分隐蔽的、直观是不能见到的,因此把诊断故障的注意力首先集中在机组已呈现的一些故障上,尽管对这些已见故障特征和机组振动现象也进行了对比分析,但严格地说这不能称作故障诊断,而应是分析寻找故障,其准确率显然不会高。2.1.4.2 习惯于反向推理 早先由于对故障特征广度和深度了解较少以及振动故障范围不明确,因此只能使用反向推理,在今天对于大多数初涉及故障诊断的人来说往往也是从反向推理开始,久而久之形成习惯,而且长期以来对于故障诊断方法本身没有引起普遍的关注,因而加深
17、了这种传统做法的发展和延伸。上述已经指出,反向推理不仅诊断结果不肯定,而且还存在误诊断和漏诊断的可能,怕漏诊断,又采用不怕误诊断的错误做法,这种诊断方法和做法直接决定了不可能获得高的诊断准确率。2.1.4.3 对掌握机组振动故障范围、故障特征和机理的重要性认识不足 目前振动故障诊断准确率不高,除受传统影响和反向推理影响外,还有一个重要原因是对于掌握机组故障范围、故障特征及机理的重要性未能引起充分的重视,所以当遇到机组振动时,主要凭个人经验和习惯做法去处理,例如空负荷下发生振动,首先想到的是机组中心、轴瓦工作及紧力;带负荷后发生振动,想到的是汽缸膨胀、轴系统热态对中,但对于这些振动的故障范围、故
18、障特征及机理,却很少认真研究,产生这种现象的原因一方面是受传统习惯的影响,另一方面是受不确切的故障特征的误导,例如一些教科书和文献指出,存在 2x(两倍转子工作频率)振动分量,是转子不对中,在这里既没有给出量值,也没有指出在什么故障范围内、应排除特征的影响下,不仅对一般工程师会产生误导得出错误的诊断,而且对从事振动专业工作多年的工程师,也会产生误导,给消振带来严重不利的影响,详见本章十七节,诊断实例一、二。接受误导的主观原因,是对于故障诊断方法、机组振动故障范围、故障特征及机理了解不够,因而对不确切的故障特征和经验缺乏分辨能力。第二节 机组振动分类 第一节已经指出,为了获得较高的诊断准确率,应
19、采用正向推理。使用正向推理必须明确振动故障范围,换句话说,采用正向推理诊断振动故障首先应明确引起汽轮发电机组振动,到底有哪些故障原因,为了搞清这个问题,前人已经做了较多的研究,并企图列出更多、更全的振动故障原因,因此机组振动故障划分,从早期按零部件,例如轴承、转子、汽缸、管道、基础等部件振动进行划分;发展到目前采用故障源,例如转子不平衡、机组中心不正、轴瓦不稳定、机械松动、共振等故障来划分;另外,也曾采用过振动频率来划分。经多年研究后发现,按这些方法划分故障,根本无法列全机组振动所有的故障,一般只能列出常见的、主要的故障,但是即使列出了这些主要的故障,也会由于其特征的多重性和相互交叉,而无法进
20、行再分类,按这种分类诊断振动故障,实际是在繁杂无章的许多故障中,以振动特征去对照寻找相似特征的故障,在这种情况下要获得可靠的、正确的诊断,显然是十分困难的。经多年的研究和不断的改进,当今彩的分类方法见表2-1。表 2-1的机组振动划分方法,是首先将机组振动按振动性质划分为普通强迫振动、电磁振动、拍振、气流激振、随机振动、轴瓦自激振动、参数振动、汽流激振、摩擦涡动等共 11 类,然后按振动类别将振动故障原因再分类,这种分类方法有以下特点:1.分类方法简单而严密。一般只要通过振动频谱或不同频率下振动分量,即可对发生的振动进行分类,而且避免了以往分类法的各类故障严重的相互交叉,虽然表 2-1中高次谐
21、波共振、电磁激振、参数振动,分谐波共振、轴瓦自激振动、汽流激振的振频率可能接近,但振动性质不同,这些振动的进一步划分,可以按其他振动特征区分,详见本章第十二节。2.表中所列的振动包括目前国内外在运行机组上已发生的各种振动。对于目前学术上讨论的、但在实际机组上未见有发生的振动,例如材料内滞、转子内腔集液等引起的自激振动没有列入在内。对国内机组振动而言,具有实际意义的是前九类振动,因此可以说这种分类法列全了汽轮发电机组的各种振动。3.在诊断一开始即可采用正向推理,对发生的振动进行分类,再用正向推理按不同的振动类别对引起振动的具体故障做出诊断。后一部分的分类的方法,在分别讨论各类振动时,将具体介绍。
22、4.经大量现场实践证明,这种分类法不同类别的振动,其故障源不存在相互交叉,这一点作为获得肯定的诊断十分重要,由此延伸引起各类振动激振力的故障也不存在交叉,这样引用推理手段才能获得可靠和肯定的诊断。5.将一个长期认为涉及多方面、复杂而难于搞清的机组振动问题简化为,只要进行简单的振动测量,再按表 2-1分类,即可把振动故障原因局限在较小的范围内,由此可以显著地降低诊断的、查找振动故障原因的工作量并缩短诊断时间。6.这一种分类法的主要缺点,是普通强迫振动划分太粗,涉及的故障原因和范围相当广,因此诊断难度较大,现场发生的振动约有 80以上是属于这一类振动,因此如何将这一类振动细分,以便诊断,尚待进一步
23、研究。本章为叙述和实际诊断方便,将普通强迫振动分为稳定的、不稳定的两类。凡是基频振幅、相位不随运行时间和运行况变化而变化的称稳定的普通强迫振动;相反,称为不稳定普通强迫振动。表 2-1略 第三节 振幅与激振力和支承动刚度的关系 表 2-1所列的 11 类振动,如果就每一类振动故障范围而言,又可分为激振力和支承动刚度两个故障原因。因此当振动增大时,如何肯定和排除其中一个故障原因,是将发生的振动分类之后进行具体诊断需要做的第一步工作。激振力和支承动刚,从直观来看,这是一个甚为简单的振动常识,但在机组振动故障诊断中却经过了一段较长的认识过程,开始只从激振为的故障原因去寻找,但是引起振动的许多激振力,
24、例如转子不平衡力、电磁激振力、转子径向刚性不对称引起参数振动中的惯性力、汽流冲击力等,在运行的机组上始终是存在的,如何测定这些激振力、评定这些激振力容许标准及解决这些问题都遇到了困难,为此才注意到轴承座动刚度。经一段时间的研究,不仅查明了影响轴承座动刚度的困素,而且找到了影响动刚度的因素的检测和诊断方法,由此才促使振动故障诊断采用正向推理。下面详细介绍激振力和支承动刚度的关系及检测、诊断方法。2.3.1 振幅与激振力和支承动刚度的关系 在线性系统中,部件呈现的振幅与作用在部件上的激振力成正比,与它的动刚度成反比,可用下式表示:A=/d 式中 A-振幅;P-激振力;d-部件动刚度。d=C/部件静
25、刚度又称刚度系数,它是表示部件产生单位位移(变形)所需的静力;动刚度是表示部件产生单位振幅(位移)所需的交变力。由公式(2-2)可见:轴承座动刚度与其静刚度成正比,而与动态放大系数成反比;当=n 时,若忽略系统阻尼,即=,即使静刚度很大,动刚度 d 也为 0。由公式(2-1)可见:在不大的激振力作用下,轴承将会产生很大的振动,这种现象称作共振。共振又分为支撑系统共振和系统部件共振两种,前者是激振力通过支撑系统输入振动系统,当支撑系统自振频率与激振力频率符合是而产生的一种共振,例如轴承某一方向自振频率与激振力频率相符的共振;后者是振动系统内某一部件自振动频率与激振力相符而产生的共振,例如转子临界
26、转速、气缸、大直径管路、发电机和励磁机静子某一方向子振动频率与激振力频率相符。这两种共振是轴承振动增大的机理不同,前者是由于支撑动刚度降低,在激振力一定时,使振幅增大;后者是由于部件共振,使振动惯性力增大并作用于轴承或基础,这是在支撑动刚度不变的情况下,由于激振力增大而使其振幅增大。在机组振动中这两种共振都会发生,本节主要讨论的是前一种共振。2.3.2承座动刚度检测方法 为了采用正向推理诊断振动故障,在激振力和支撑动刚度两类故障中,首先应肯定或排除其中一个。大量现场实践证明,检测轴承座动刚度是一种简单而有效的方法,通过进一步观察发现并由公式(2-2)可见,轴承座动刚度除与静刚度和共振放大因素有
27、关外,还与动态下其连接刚度直接有关,下面具体介绍影响动刚度的三个因素的检测和诊断方法。2.3.2.1 连接刚度 转子的支撑系统一般有轴承盖、轴承座、基础台板、基础横梁等部件组合而成,这些部件连接的紧密程度,直接影响这部件刚度。部件之间连接紧密程度对刚度的影响,称连接刚度。检查部件连接紧密程度传统的方法由检查连接螺丝预紧力、连接部件之间的间隙等方法,但这些检测方法不仅手续麻烦,而且不能检测动态下连接的紧密程度。通过总结大量现场振动测试结果得到,采用检测连接部件之间差别振动,是检查连接部件动态下连接紧密程度简单而有效的方法。所谓差别振动,是指两个相邻的连接部件振幅的差值。差别振动值本身已说明两个相
28、邻的连接部件之间在动态下产生了相对位移量,这种微小的位移将显著地降低部件的动刚度,但在静态下连接部件之间并无间隙存在,而且连接螺丝预紧力往往也正常。对于一般的轴承座来说,在同一轴向位置(如图 2-1所示),测点上下标高差在 100mm以内的两个连接部件,在连接紧围固的情况下,其差别振动应小于 2 m;滑动面之间正常的差别振动应小于 5 m;对于发电机后轴承座与台板之间有绝缘垫者,其差别振动应小于 7 m。当两个相邻部件差别振动明显大于这些数值时,即可判定轴承座连接刚度不足。差别振动愈大,故障愈为严重。在测量轴承各点振动时,除测量垂直振幅和相位外,必要时对该点水平和轴向振动也应测量;在测量时若发
29、现差别振动异常,必须复测一遍;只有两次测量结果基本一致,才能认为数据可靠。造成转子支承系统连接部件之间差别振动过大的主要原因有。1.连接螺丝松动 由于检修或安装时疏忽,轴承盖、轴承座、基础台板等连接螺丝部分没有拧紧或预紧力不够。由连接部件之间差别振动值,直接可以看出是哪一个连接螺丝没有拧紧。2.轴承座与台板接触不良 由于轴承座或台板的变形及修刮不良,发电机后轴承座与台板之间的绝缘垫过多或太厚、不平整等原因,即使在各个连接螺丝都拧紧的情况下,仍不能达到要求的连接刚度,在动态下仍存在显著的差别振动。3.基础台板与基础接触不良 造成基础台板与基础接触不良的原因有:1.二次灌浆质量不高。其中包括未充实
30、和水泥标号较低。2.基础台板垫铁走动。这种现象主要是由于二次灌浆质量不好、台板垫铁间距过大、吃力不均、垫铁之间及与台板之间未焊牢,在过大轴承振动作用下,使垫铁发生走动。3.基础垫铁过高。这种现象对轴承座垂直方向动刚度影响不大,但显著地降低了轴承座水平和轴向动刚度,而且往往在较大轴向振动作用下,使轴承座台板二次灌浆松裂。其动刚度进一步降低,形成恶性循环。为此在安装时台板垫铁高度不要超过 80mm。4.轴承座漏油。由于汽轮机油浸入二次灌浆,使其强度显著降低,在振动作用下不紧使二次灌浆松裂,而且使二次灌浆与台板分离,振动进一步扩大。5.轴承座振动过大。不论是垂直、水平和轴向振动过大,都可以使基础二次
31、灌浆松裂,使轴承座振动扩大,二次灌浆松裂加剧。6.基础台板垫铁氧化。造成台板和垫 铁氧化的主要原因,是由于在严寒的冬季施工时,为了防冻,在二次灌浆中加入过量的食盐,机组运行后二次灌浆中的氯化钠与铁氧化,首先生成 Fe3O4,体积增大,使台板和基础分离,而后进一步氧化成 Fe2O3,在振动作用下形成红色粉末,造成台板与基础腾空,台板与基础之间的连接刚度显著降低。2.3.2.2 共振 在共振转速附近,部件振幅和转速的关系,是由振动系统阻尼和激振力决定的,座落在水泥基础上的轴承座要比座落在钢结构的基础上的阻尼大得多,因此在同样激振力作用下,前者振幅要比后者小得多,而且钢结构的基础振动自由度比水泥基础
32、多得多,因此升速过程中带有钢结构基础的机组,会出现多个支承系统共振转速,对水泥基础的大多数机组来说,其支承系统自振频率均高于转子工作频率,因此在升速过程中会出现共振,这种支承系统的共振转速,在一些资料和某些制造厂的说明书中,被称作轴系临界转速,这是一种误解,另外这种提法与轴系真正临界转速相混淆,不利于机组安全运行。判断转子支承系统是否存在共振,有下列两种方法。1.转速试验和降低其激振力 当改变转速,轴承振幅无明显变化时,即可排除共振的存在。如转速升高,轴承振幅明显升高,则有三种可能:一是支承系统存在共振;二是随着转速升高,作用在轴瓦上的激振力也随之增大;三是周围部件存在共振。对于后一种情况,通
33、过对这些部件振动进一步测试,可判明振动形式,如怀疑系统部件共振,且提高其自振频率工作量不大,例如简单加支撑,可首先采用避共振进行试验;若改变自振频率有困难,则不论是由支撑系统存在共振还是转速升高后激振力增大所致,首先应从降低激振力力手。这是因为实际机组即使判明存在共振,改变这些部件自振频率避开共振,往往是困难的,最消振还得从降低激振力入手。由多台组消振经验证明,不论转子支承系统存在共振,还是系统部件共振,例如汽缸、励磁机静子的共振,使轴承某一方向振动过大,采用降低激振力的办法后,这些共振部件和轴承的振幅,都达到了良好水平。2.轴承顶部振幅和基础振幅之比 如轴承座座落在基础上,产生共振时,不仅其
34、振幅与转速明显有关,而且轴承座顶部振幅与基础也很接近,甚至基础振幅比轴承振幅还要大,因此国外有资料指出,轴承顶部振幅与基础振幅之比小于 1.5-2.0时,表明支承系统存在共振。从现场测试结果来看,若是支承系统存在明显的共振,其比值应接近于 1。转子支承系统还有一种共振形成,即轴承座座落在排汽缸上发生共振,在目前国内投运的大机组中为数不少,这种共振采用轴承顶部振幅与基础振幅之比的方法还不能判断。对这种支承系统可采用下列方法进行判断:i.转速试验。观察轴承振幅与转速的关系。判断方法见前述。ii.转轴相对振动与轴承振动之比。正常的机组转轴相对振动大于该方向的轴承振动,其比值一般为 2-3 倍,或更高
35、。当转子支承系统存大共振或轴承动刚度严重不足时,转轴相对振动与轴承振动接近,甚至小于轴承振动。iii.激振试验,直接测定其动刚度。iv.加重试验,测定其不平衡响应。后两种方法的具体步骤见 2.3.2.3。2.3.2.3 结构刚度 轴承座的结构刚度是由其外形、壁厚、材料和支承基础的静刚度决定的,若要对轴承座结构刚度作出较确切的诊断;可采用下列方法:1.激振试验 测定轴承座动刚度的激振有两种方法:一种是电磁激振;另一种是偏心激振。前者激振力一般较小,而且不易生根固定,因此在测定轴承座动刚度中应用较少。偏心激振是由直流电机带动一个主动偏心轮以及主动轮同步旋转的从动偏心轮,调整两个偏心轮相对啮合位置,
36、可以使它垂直或水平(横向和轴向)单方向激振;改变偏心距和偏心质量,在一定的转速下即可改变激振力;改变转速,即可改变激振力的频率和激振力大小。轴承动刚度 Kd 由下式求得 Kd=2P/A P=mr2 式中 A-激振时测得该方向的轴承振幅(峰峰值)P-激振力;m-偏心质量;r-偏心距;-偏心轮的圆频率。轴承座正常的动刚度值为 1 107-3107N/cm;对于座落在排汽缸上的轴承其垂直方向动刚度一般明显偏低,数值为 0.5107-1107N/cm;当支承系统存在共振时,在共振转速下其动刚度一般会降低一个数量级,如图 2-2曲线 2。当获得轴承座动刚度数值之后,即可对其动刚度正常与否作出诊断。若动刚
37、度明显偏低,在排除连接刚度不足和共振影响之后,即可断定动刚度不足是由结构刚度不足引起的。2.加重试验 检测轴承座动刚度还有一种较简单的方法,是在其附近的转子上加重,测定其不平衡响应值。加重平面应靠近该并在转轴刚度较大的部位加重,例如联轴器上或转子其他部位,以免与转子不平衡响应过高相混淆。值的含义和计算方法,见第三章第三节。若在转子主跨内加重,对于大机组来说,建议不要采用单侧加重,因为转子工作转速已远离转子第一临界转速。单侧加重产生的主要是一阶平衡,在工作转速下这种不平衡的值很小,不能有效地反映轴承座动刚度大小,建议加二阶不平衡;对于汽轮机高压转子无法在转主跨内加二阶不平衡时,除可在联轴器上加重
38、外,还可以在末级叶轮上加重。一般下常的机组在联轴器和转子主跨内加重的值,如表 2-2所示。表 2-2所以采用原半径下值,主要考虑使不同容量机组转子重量与加重半径相对应,由现场测试结果统计来看,当轴承动刚度和转子不平衡响应正常时,不同容量的机组的值基本相近,由此可以近似采用相同标准衡量。采用上述方法加重求得的值,如比表 2-2相应数值明显偏高,则可认为轴承动刚度偏低,在排除连接刚度不足和影响之后,虽然没有取得动刚度具体数值,但可以作出轴承座结构刚度偏低的肯定诊断。2.3.3 现场实用的轴承座动刚度诊断方法 由上述诊断轴承座动刚度的方法可知,若要对轴承座结构刚度作出确切诊断,须做激振试验;但如果只
39、需对其动刚度和结构度作出定性诊断,则可采用现场易行的在转子上加重的试验。但由进一步研究得出,现场运行的机组无须对轴承座结构刚度进行诊断,原因如下。2.3.3.1 与同型机组运行状况的比较 若同型机组在其他电厂运行时振动普遍不大,说明该型机组轴承座动刚度正常;若该型机组运行中振动普遍较大,从已做的工作中应能查明这种形式机组振动过大的原因和振动性质,若是普通强迫振动,则要进一步分析是转子不平衡响应过高还是轴承座动刚度偏低;若不是普通强迫振动,则与轴承结构刚度无关。2.3.3.2 直观判断 由类似的机组或同等容量的机组结构比较,可大致判断该座在某一方向结构刚度是否正常。2.3.3.3 运行机组增大结
40、构刚度十分困难 对轴承座结构刚度低作出了明确的诊断,虽可以为机组今后改进设计提供依据,但从现场消振来说,增加其结构刚度是十分困难的,而只能从降低激振力入手,所以从现场实用诊断来说,无须进一步查明轴承座结构刚度。基于上述三点理由,在实际机组振动故障诊断中,当振动属于普通强迫振动时,排除了连接刚度不足和共振影响之后,即可作出引起振动故障原因是激振力过大的诊断。这种诊断虽不十分严密,却有实用价值。通过进一步研究证明,在诊断表 2-1 所列的 11 类振动时,无须每一类都检测轴承连接刚度,因为对于一台振动正常的机组,虽然可能存在这种或那种激振力,但是这些激振力中最大的是转子不平衡力,而且总是作用在轴承
41、座上。表 2-1 指出,它将激起普通强迫振动,因此如轴瓦上呈现的普通强迫振动分量不大则证明轴承座连接刚度、结构刚度正常,也无法共振存在,所以当振动过大时,从实用诊断来说,仅对普通强迫振动才有必要检测连接刚度和共振影响。而对其他 10类振动,只要关部件共振影响即可。因为这些部件有可能会产生非基频共振,当排除共振影响之后,即可作出引起振动的故障原因是激振力过大的诊断。第四节 稳定普通强迫振动 当振动属于普通强迫振动,而且其振幅与机组运行工况、运行时间无明显关系时,排除了轴承座连接刚度、共振影响之后,采用正向推理诊断可以得出振动故障原因是激振力过大,本节要介绍引起稳定普通强迫振动激振力的故障原因。由
42、表 2-1可见,引起普通强迫振动的激振力有转子不平衡、固定式联轴器连接的轴系同心度和平直度偏差、轴颈不圆等三种,不对称电磁力是随机组运行工况而变的,因此它是不稳定普通强迫振动的激振力。下面介绍这三种激振力故障原因、产生振动的机理和诊断方法。2.4.1 转子不平衡 在现场发生的机组振动过大,按其原因来分,属于转子质量不平衡的约占 80;按激振力性质来分,属于转子不平衡力的将达 90左右。当转子工作转速低于 0.4-0.5倍转子第一临界转速时,这种转子质量不平衡引起的激振力可用下列表示:A=mr2/Kd 式中 m,r-不平衡质量,其质心离回转中心的距离(加重半径)由公式可见当忽略轴承座动刚度 Kd
43、 随转速改变的影响时,在一定的转子不平衡量情况下,轴承拓幅 A 与转速平方2 成正比,但这种关系仅对刚性转子成立。目前运行的 6MW以上的汽轮机和发电机转子均属柔性转子,这种转子在转速升高的过程中,其绕曲将发生改变,转子平衡状态也随之发生变化,此时转子产生的不平衡离心力已不是 mr2,而是不平衡质量产生的不平衡力和转子绕曲产生的不平衡力之和。关于柔性转子不平衡振动特性的进一步讨论,见第三章第四节。不过从这些讨论中有以下两点结论,可以作为转子不平衡故障诊断的依据。1)根据波德曲线或振动和转速关系测量结果可得出,当转子在相应临界转速出现显著振动时,即可断定该转子存在显著的相应阶不平衡。2)如果工作
44、转速下存在较大的基频振动,并已排除了轴承座动刚度不足、固定式联轴器连接的转子不同心和平直度偏差过大、轴颈不圆等故障,那么就可以作出引起工作转速下振动过大的原因是转子不平衡的诊断。2.4.2 轴系同心度和平直度偏差 目前机组采用的联轴器可归纳为活动式、半挠 性和固定式三种。就其产生振动的特征来分、有活动式和固定式两种。活动式联轴器由于存在磨损,目前运行的机组,特别是容量机组已不再采用。这种联轴器在传递扭矩不大时,能起一定的调节作用,在一定的转子对中偏差情况下,不会产生明显的激振力,但是当对中偏差过大、传递扭矩改变时,将引起不稳定普通强迫振动。这种振动的诊断见本章第八节。下面讨论固定式联轴器中对中
45、偏差产生振动的故障原因及机理。在国内许多振动资料中都提到机组中心不正这个名词,国外称作不对中,而且都是作为机组振动故障主要原因列出的,因此现场机组一旦发生振动,传统的做法是:一、查轴瓦乌金接触;二、查轴瓦紧力;三、查机组中心,俗称处理机组振动的三斧头。而且一般教科书指出,机组中心不正引起的振动,其频率与转速相符合,按表 2-1分类,属于普通强迫振动。上述已经指出,现场发生的振动 80以上属于这一类振动,如果这种激振力和转子不平衡力不能获得有效的区分,将会造成现场绝大多数振动故障不能获得明确的诊断,因此很有必要对机组中心或不对中的真正含义及产生振动的机理作较深入的分析讨论。机组中心确切的含义应包
46、括转子与汽缸或静子的同心度、支承转子各轴承座标高及水平位置、轴系连接的同心度和平直度三项内容,这些故障产生振动的机理及其特征如下。2.4.2.1 转子与汽缸或静子的同心度 检查转子与汽缸或静子同心度,这是机组安装、检修中较熟悉的一项工作,如其偏差过大,则可能会引起汽流激振、电磁激振、动静碰磨。若碰磨发生在转轴处,会使转子发生热弯曲而引起不稳定普通强迫振动。这些振动特征和诊断方法,见本章第九、十、十二、十六节。2.4.2.2 轴承座标高和左右位置偏差 在现场检查转子对中或找正,是将联轴器断开,检测联轴器圆周和端面开口偏差(上下、左右),目前将这种偏差称作机组中心不正,而且不少资料和教科书将这种偏
47、差误认为是造成机组振动的主要故障,由于这种误解使机组振动故障诊断研究走了一段较长的弯路。后来不得不从故障机理研究,才查明了这种故障对振动的影响。如果忽略联轴器缺陷(与轴颈不同心、两个端面不平行、法兰止口或螺栓节圆偏心),当其圆周、端面开口存在显著偏差时,拧紧联轴器螺栓,虽然连接的轴系仍然同心和平直,在旋转状态下并不直接产生振动的激振力,但它会产生下列后果。1.改变轴瓦的载荷分配 当端面下开口时,会使联轴器相邻的两个轴瓦载荷减少;圆周差会使圆周较低的相邻轴瓦载荷减少;反之,则相反。当轴瓦载荷过大时,会使乌金温度升高;载荷过小时,会使轴瓦失稳发生轴瓦自激振动,这种振动特征和诊断方法见本章第十四节。
48、2.改变动静间隙 轴瓦载荷的改变,虽然不会明显影响轴颈在轴瓦内的位置,但会使转子静挠曲发生变化,从而原来调整好的汽封、油挡间隙发生变化,严重时会发生动静碰磨,使转子产生热弯曲引起不稳定普通强迫振动,这种振动的特征及诊断方法见第九、十节。3.改变转子振型曲线 由于轴瓦载荷改变,影响转子支承状态,使转子振型曲线发生变化,对于采用有限平面平衡的柔性转子中,当转子振型曲线变化时,其平衡状态会发生变化。由大量现场振动测试结果证明,对于不平衡响应正常的轴系,当转子中心和端面开口差小于 0.60mm时,对轴系平衡的影响可以忽略;对于不平衡响应明显偏高的轴系和转子,当转子中心和端面开口偏差过大(小于 0.5m
49、m)时,会使轴系平衡状态发生一定的变化。这时消振有两个途径:一是消除或调整转子中心和端面开口偏差;二是调整轴系平衡。其中柔性转子合理平衡是关键,因此后一种方法较前者更为简单有效。降低轴系不平衡响应对运行机组而言是十分困难的。柔性转子的合理平衡见第三章第四节,轴系不平衡响应测试和判断方法,见本章第五节 2.5.3 4.转轴承受预载荷 所谓预载荷是指施加在转轴上的一种径向载荷(力),它又分外部和内部预载荷。外部预载荷是指外部施加到转子上的力,它主要是由联轴器端面瓢偏、联轴器与转轴不同心和转子自重引起;内部预载荷是指机器内部产生的施加到转子上的力,它主要由轴瓦油膜力、轴承座标高变化、接触密封引起的压
50、力不对称、蒸汽作用力、传动齿轮对转轴反作用力等。预载荷的直接影响是使转轴承受额外的应力,并使轴颈压向轴瓦的一侧,由此产生非线性压束,激起两倍频振动。如果转轴径的刚性不对称,例如发电机转子,会使两倍频率振动更加显著。预载荷未必有害,有些因素引起的预载荷会使轴瓦趋于稳定,例如消除轴瓦自激振动,为了提高轴瓦稳定性,有时将该瓦抬高,对该瓦施加一个预载荷。目前国内绝大部分机组转子找中心的要求,是以冷态为准的,即在冷态下使联轴器圆周和平面偏差力求最小。但事实上机组启动带负荷后,由于各轴承座标高和轴颈抬起,这两种偏差将有较大的变化。据资料(5)介绍,采用连通器的原理,通过涡流传感器测量水银液面变化,在现场实