《312 指数函数(3).doc》由会员分享,可在线阅读,更多相关《312 指数函数(3).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、凤凰高中数学教学参考书配套教学软件_教学设计3.1.2指数函数(3)宿迁市马陵中学范金泉教学目标:进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题教学重点:用指数函数模型解决实际问题教学难点:指数函数模型的建构教学过程:一、情境创设1某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为 万元,后年的产值为 万元若设x年后实现产值翻两番,则得方程 二、数学建构指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等递增的常见模型为y(1p%)x(p0);递减的常见模型则为y(1p%)x(p0
2、)三、数学应用例1某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式A(1,8)yOtB(7,1)C例2某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为y(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数ykat的图象试根据图象,求出函数y f(t)的解析式例3某位公民按定期三年,年利率为2.70%的方式把5000元存入银行问三年后这位公民所得利息是多少元?例4某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为y元
3、(1)写出本利和y随存期x变化的函数关系式;(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法) 小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1p%),还款后余额为a(1p%)b,第
4、二次还款时本息为(a(1p%)b)(1p%),再还款后余额为(a(1p%)b)(1p%)ba(1p%)2b(1p%)b,第n次还款后余额为a(1p%)nb(1p%)n-1b(1p%)n-2b这就是复利计算方式例520002002年,我国国内生产总值年平均增长7.8%左右按照这个增长速度,画出从2000年开始我国年国内生产总值随时间变化的图象,并通过图象观察到2010年我国年国内生产总值约为2000年的多少倍(结果取整数)练习:1(1)一电子元件去年生产某种规格的电子元件a个,计划从今年开始的m年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式; (2)一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的m年内,每年生产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式2某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成个 3我国工农业总产值计划从2000年到2020年翻两番,设平均每年增长率为x,则得方程 四、小结:1指数函数模型的建立;2单利与复利;3用图象近似求解五、作业:课本P71-10,16题