竞赛讲座函数与方程.doc

上传人:asd****56 文档编号:79310504 上传时间:2023-03-21 格式:DOC 页数:14 大小:342KB
返回 下载 相关 举报
竞赛讲座函数与方程.doc_第1页
第1页 / 共14页
竞赛讲座函数与方程.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《竞赛讲座函数与方程.doc》由会员分享,可在线阅读,更多相关《竞赛讲座函数与方程.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高中数学竞赛专题一 函数与方程思想函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决这种思想方法在于揭示问题的数量关系

2、的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。一、考点回顾函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0p

3、4的一切实数,不等式x2px4xp3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数yx2(p4)x3p,于是问题转化为:当p0,4时,y0恒成立,求x的取值范围解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的如果把p看作自变量,x视为参数,构造函数y(x1)p(x24x3),则y是p的一次函数,就非常简单即令 f(p)(x1)p(x24x3)函数f(p)的图象是一条线段,要使f(p)0恒成立,当且仅当f(0)0,且f(4)0,解这个不等式组即可求得x的取值范围是(,1)(3,)本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个

4、非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用函数的观点和方法解决常见数学问题的解题规律。在解题中,充分、合理地运用函数与方程的思想方法,会产生意想不到的效果方程f(x)0的解就是函数yf(x)的图像与x轴的交点的横坐标,函数yf(x)也可以看作二元方程f(x)y0通过方程进行研究,要确定变化过程的某些量,往往要转化为求出这些量满足的方程,希望通过方程(组)来求得这些量这就是方程的思想,方程思想是动中

5、求静,研究运动中的等量关系1函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。2方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;3函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数yf(x),当y0时,就转化为方程f(x)0,也可以把函数式yf(x)看做二元方程yf(x)0。(2)函数与不等式也可以相互转化,对于函数yf(x),当y0时,就

6、转化为不等式f(x)0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)(1+x)n (nN*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。二、 经典例题剖析1. (湖北卷)关于x的方程(x21)2|x21

7、|k0,给出下列四个命题:存在实数k,使得方程恰有2个不同的实根;存在实数k,使得方程恰有4个不同的实根;存在实数k,使得方程恰有5个不同的实根;存在实数k,使得方程恰有8个不同的实根.其中假命题的个数是( ).A. 0B. C. D. 解析:本题是关于函数、方程解的选择题,考查换元法及方程根的讨论,属一题多选型试题,要求考生具有较强的分析问题和解决问题的能力.思路分析:1. 根据题意可令x21t(t0),则方程化为t2tk0,(*)作出函数tx21的图象,结合函数的图象可知当t0或t1时,原方程有两上不等的根,当0t1时,原方程有4个根,当t1时,原方程有3个根.(1)当k2时,方程(*)有

8、一个正根t2,相应的原方程的解有2个;(2)当k时,方程(*)有两个相等正根t,相应的原方程的解有4个;(3)当k0时,此时方程(*)有两个不等根t0或t1,故此时原方程有5个根;(4)当0k时,方程(*)有两个不等正根,且此时方程(*)有两正根且均小于1,故相应的满足方程|x21|t的解有8个,故选A.2. 由函数f(x)(x21)2|x21|的图象(如下图)及动直线g(x)k可得出答案为A.3. 设t|x21|(t0),t2tk0,方程的判别式为14k,由k的取值依据0、0、0从而得出解的个数.4. 设函数f(x),利用数轴标根法得出函数与x轴的交点个数为5个,以及函数的单调性大体上画出函

9、数的图象,从而得出答案A. 答案:A 点评:思路1、思路2、思路4都是利用函数图象求解,但研究的目标函数有别,思路2利用函数的奇偶性以及交轨法直观求解,很好地体现了数形结合的数学思想,是数形结合法中值得肯定的一种方法;思路3利用方程的根的个数问题去求解,但讨论较为复杂,又是我们的弱点,有利于培养我们思维的科学性、严谨性、抽象性、逻辑推理能力等基本素质.2. (广东卷)已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ). 5. 4. 3. 2 解析:设等差数列的首项为a1,公差为d据题意得: 答案:C 点评:运用等差、等比数列的基本量(a1,d,q)列方程,方程组是

10、求解数列基本问题的通法.3. (安徽卷)已知,tancot.()求tan的值;()求的值.解析:()由tancot得3tan210tan30,即tan3或tan,又,所以tan=为所求.答案: 点评:第()问是对方程思想方法灵活考查,能否把条件tancot变形为关于tan的一元二次方程,取决于解题的目标意识和是否对方程思想方法的深刻把握和理解. 4. (江西卷)若不等式x2ax10对于一切x(,成立,则a的最小值是(). . . . 解析:与x2ax10在上恒成立相比,本题的难度有所增加.思路分析:. 分离变量,有a(x),x(,恒成立.右端的最大值为,故选.2. 看成关于a的不等式,由f(0

11、)0,且f()0可求得a的范围.3. 设f(x)x2ax1,结合二次函数图象,分对称轴在区间的内外三种情况进行讨论.4. f(x)x21,g(x)ax,则结合图形(象)知原问题等价于f()g(),即a.5. 利用选项,代入检验,不成立,而成立.故选.答案: 点评:思路具有函数观点,可谓高屋建瓴.思路又充分利用了题型特点.5. (全国卷)已知抛物线x24y的焦点为,、是抛物线上的两动点,且(0).过A、B两点分别作抛物线的切线,设其交点为M.(1)证明为定值;(2)设ABM的面积为S,写出Sf()的表达式,并求S的最小值.解:(1)证明:由已知条件,得F(0,1),0.设A(x1,y1),B(x

12、2,y2).由,得(x1,1y1)(x2,y21),即将式两边平方并把代入得 解、式得y1,y2,且有x1x2x224y24,抛物线方程为yx2,求导得yx.所以过抛物线上A、B两点的切线方程分别是yx1(xx1)y1,yx2(xx2)y2,即.解出两条切线的交点M的坐标为,所以 .所以为定值,其值为0.(2)由(1)知在ABM中,FMAB,因而S|AB| |FM|.|FM|.因为|AF|、|BF|分别等于A、B到抛物线准线y1的距离,所以|AB|AF|BF|y1y222()2.于是S|AB| |FM|()3由2知S4,且当1时,S取得最小值4.点评:在解析几何中考查三角形面积最值问题是高考的

13、重点和热点,求解的关键是建立面积的目标函数,再求函数最值,至于如何求最值应视函数式的特点而定,本题是用均值定理求最值的.6. 设f(x),g(x)分别是定义在上的奇函数和偶函数,当x0时,f(x)g(x)f(x)g(x),且g(),则不等式f(x)g(x)0的解集是( ). (3,0)(3,) . (3,0)(0,3). (,)(3,) . (,)(,)解析:以函数为中心,考查通性通法,设(x)f(x)g(x),由f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)f(x)g(x)f(x)g(x)F(x),即F(x)为奇函数.又当x0时,F(x)f(x)g(x)f(x)g(x)0,

14、所以x0时,F(x)为增函数.因为奇函数在对称区间上的单调性相同,所以x0时,F(x)也为增函数.因为F(3)f(3)g(3)0F(3).如上图,是一个符合题意的图象,观察知不等式F(x)0的解集是(,)(,),所以选D.答案:D 点评:善于根据题意构造、抽象出函数关系式是用函数思想解题的关键.题中就是构建函数F(x)f(x)g(x),再根据题意明确该函数的性质,然后由不等式解集与函数图象间的关系使问题获得解决的.7. 函数f(x)是定义在,上的增函数,满足f(x)f()且f(),在每一个区间(i,)上,yf(x)的图象都是斜率为同一常数k的直线的一部分.(1) 求f()及f(),f()的值,

15、并归纳出f()(i,)的表达式;()设直线x,x,x轴及yf(x)的图象围成的梯形的面积为ai(i,),记(k)(a1a2an),求(k)的表达式,并写出其定义域和最小值.解析:以函数为细节,注重命题结构网络化,()由f(0)f(),得f().由f()f()及f(),得f()f().同理,f()f().归纳得f()(i,).()当x=时,所以an是首项为(),公比为的等比数列,所以 .(k)的定义域为k|0k1,当k1时取得最小值. 点评:高考命题寻求知识网络化已是大势所趋,而函数是把各章知识组合在一起的最好的“粘合剂”.高考试题注重知识的联系,新而不偏,活而不怪.这样的导向,就要求在学习中必

16、须以数学思想指导知识、方法的运用,注意培养我们用联系的观点去思考问题的习惯.8. 对任意实数k,直线:ykxb与椭圆:(02)恒有公共点,则b取值范围是 .解析:方法,椭圆方程为,将直线方程ykxb代入椭圆方程并整理得 .由直线与椭圆恒有公共点得化简得由题意知对任意实数k,该式恒成立,则12(b1)24(b1)20,即b.方法,已知椭圆与y轴交于两点(,),(,).对任意实数k,直线:ykxb与椭圆恒有公共点,则(,b)在椭圆内(包括椭圆圆周)即有1,得1b3. 点评:方法是运用方程的思想解题,这是解析几何变几何问题为代数问题的方法.方法运用数形结合的思想解题,是相应的变代数问题为几何问题的方

17、法.高考试题中设置一题多解的试题就是为了考查学生思维的深度和灵活运用数学思想方法分析问题和解决问题的能力.评判出能力与素养上的差异.07年8设a1,函数在区间a,2a上的最大值与最小值之差为,则a= (D)AB2C2 D49是定义在R上的函数,则“均为偶函数”是“为偶函数”的 (B)A充要条件B充分而不必要的条件C必要而不充分的条件D既不充分也不必要的条件10的展开式中,常数项为15,则n (D)A3B4C5D612函数的一个单调增区间是 (A)A()B()C()D()15等比数列an的前n项和Sn,已知成等差数列,则an的公比为 1/3 。20(本小题满分12分)设函数f(x)exe x。(

18、)证明:f(x)的导数f(x)2;()若对所有x0都有f(x)ax,求a的取值范围。20解:()f(x)的导数。由于,故。(当且仅当时,等号成立)。()令g(x)= f(x)-ax,则,()若,当x0时,故g(x)在上为增函数,所以,时,即。()若a2,方程g(x)=0的正根为,此时,若,则g(x)0,故g(x)在该区间为减函数。所以,时,g(x) g(0)=0,即f(x)ax,与题设相矛盾。综上,满足条件的a的取值范围是。21(本小题满分12分)已知椭圆的左、右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且ACBD,垂足为P。()设P点的坐标为(x0

19、,y0),证明:;()求四过形ABCD的面积的最小值。21证明:()椭圆的半焦距,由ACBD知点P在以线段F1F2为直径的圆上,故,所以,。()()当BC的斜率k存在且时,BD的方程为y=k(x+1),代入椭圆方程,并化简得。设B(x1,y1),D(x2,y2),则,;因为AC与BC相交于点P,且AC的斜率为,所以,。四边形ABCD的面积。当k2=1时,上式取等号。()当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4。综上,四边形ABCD的面积的最小值为。三、 配套练习:1、填空(1) 若二次函数满足且有实根,则。(2) 设函数的图象关于直线对称,若当1时,则当时,y= 。(3)

20、若函数与函数的图象有公共点,则a的取值范围是 。(4) 已知函数的图象与轴交于A、B两点,若线段AB的长不超过5,则a的取值范围是 。2、方程的两根都大于2,求实数a的取值范围。3、已知关于的方程 两个实根分别在(0,1)与(-1,0)之间,试求实数k的取值范围。4、已知方程的两个实根绝对值之和为2,求实数m的值。5、当m取何值时,关于x的方程有实数解?6、已知关于的方程有两个不相等的实根,求a的取值范围,并求出两根。7、当0m2时,求方程的实根的取值范围。8、设,(a,bR),如果,确定a、b的取值范围。9、若不等式对于任何实数x都成立,求a的取值范围。10、已知是方程的两个实根,且,求m的取值范围。11、若方程有解,求a的取值范围。14

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁