《初中数学竞赛讲座3.doc》由会员分享,可在线阅读,更多相关《初中数学竞赛讲座3.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三讲 一次方程(组) 吴忠市第一中学 韩瑞峰一、基础知识1、方程的定义:含有未知数的等式。2、一元一次方程:含有一个未知数并且未知数的最高次数为一次的整式方程。3、方程的解(根):使方程左右两边的值相等的未知数的值。4、 字母系数的一元一次方程:ax=b。其解的情况: 5、 一次方程组:由两个或两个以上的一次方程联立在一起的联产方程。常见的是二元一次方程组,三元一次方程组。6、 方程式组的解:适合方程组中每一个方程的未知数的值。7、解方程组的基本思想:消元(加减消元法、代入消元法)。二、例题示范例1、 解方程例2、 关于x的方程中,a,b为定值,无论k为何值时,方程的解总是1,求a、b的值。
2、提示:用赋值法,对k赋以某一值后求之。例3、(第36届美国中学数学竞赛题)设a,ab,b是实数,且a和a不为零,如果方程ax+b=0的解小于a/x+b=0的解,求a,ab,b应满足的条件。例4 解关于x的方程.提示:整理成字母系数方程的一般形式,再就a进行讨论例5 k为何值时,方程9x-3=kx+14有正整数解?并求出正整数解。提示:整理成字母系数方程的一般形式,再就k进行讨论。例6(1982年天津初中数学竞赛题)已知关于x,y的二元一次方程(a-1)x+(a+2)y+52a=0,当a每取一个值时就有一个方程,而这些方程有一个公共解,你能求出这个公共解,并证明对任何a值它都能使方程成立吗?分析
3、依题意,即要证明存在一组与a无关的x,y的值,使等式(a-1)x+(a+2)y+5-2a=0恒成立,令a取两个特殊值(如a=1或a=-2),可得两个方程,解由这两个方程构成的方程组得到一组解,再代入原方程验证,如满足方程则命题获证,本例的另一典型解法例7(1989年上海初一试题),方程 并且abc0,那么x_提示:1、去分母求解;2、将3改写为。例8(第4届美国数学邀请赛试题)若x1,x2,x3,x4和x5满足下列方程组: 确定3x4+2x5的值.说明:整体代换方法是一种重要的解题策略.例9 解方程组提示:仿例8,注意就m讨论。例10 如果方程组(1)的解是方程2x-y=4(2)的解,求m的值。提示:1、从(1)中解出x,y用m表示,再代入(2)求m ; 2、在(1)中用消元法消去m再与(2)联立求出x,y,再代入(1)求m。例11 如果方程ax+by+cz=d对一切x,y,z都成立,求a,b,c,d的值。提示:赋值法。例12 解方程组。提示:引进新未知数