面对高考题目 高中数学复习专题讲座三角函数式的化简与.doc

上传人:asd****56 文档编号:79302340 上传时间:2023-03-21 格式:DOC 页数:8 大小:848KB
返回 下载 相关 举报
面对高考题目 高中数学复习专题讲座三角函数式的化简与.doc_第1页
第1页 / 共8页
面对高考题目 高中数学复习专题讲座三角函数式的化简与.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《面对高考题目 高中数学复习专题讲座三角函数式的化简与.doc》由会员分享,可在线阅读,更多相关《面对高考题目 高中数学复习专题讲座三角函数式的化简与.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、题目 高中数学复习专题讲座三角函数式的化简与求值高考要求 三角函数式的化简和求值是高考考查的重点内容之一 通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍 重难点归纳 1 求值问题的基本类型 给角求值,给值求值,给式求值,求函数式的最值或值域,化简求值 2 技巧与方法 要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式 注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用 对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法 求最值问题,常用配方法、换元

2、法来解决 典型题例示范讲解 例1不查表求sin220+cos280+cos20cos80的值 命题意图 本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高 知识依托 熟知三角公式并能灵活应用 错解分析 公式不熟,计算易出错 技巧与方法 解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会 解法一 sin220+cos280+sin220cos80= (1cos40)+ (1+cos160)+ sin20cos80=1cos40+cos160+sin20cos(60+20)=1cos40+ (cos120cos40sin120sin40)+sin

3、20(cos60cos20sin60sin20)=1cos40cos40sin40+sin40sin220=1cos40(1cos40)= 解法二 设x=sin220+cos280+sin20cos80y=cos220+sin280cos20sin80,则x+y=1+1sin60=,xy=cos40+cos160+sin100=2sin100sin60+sin100=0x=y=,即x=sin220+cos280+sin20cos80= 例2设关于x的函数y=2cos2x2acosx(2a+1)的最小值为f(a),试确定满足f(a)=的a值,并对此时的a值求y的最大值 命题意图 本题主要考查最值

4、问题、三角函数的有界性、计算能力以及较强的逻辑思维能力 知识依托 二次函数在给定区间上的最值问题 错解分析 考生不易考查三角函数的有界性,对区间的分类易出错 技巧与方法 利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等 解 由y=2(cosx)2及cosx1,1得 f(a)f(a)=,14a=a=2,+或2a1=,解得a=1,此时,y=2(cosx+)2+,当cosx=1时,即x=2k,kZ,ymax=5 例3已知函数f(x)=2cosxsin(x+)sin2x+sinxcosx(1)求函数f(x)的最小正周期;(2)求f(x)的最小值及取得最小值时相应的x的值;(3

5、)若当x,时,f(x)的反函数为f1(x),求f-1(1)的值 命题意图 本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力 知识依托 熟知三角函数公式以及三角函数的性质、反函数等知识 错解分析 在求f-1(1)的值时易走弯路 技巧与方法 等价转化,逆向思维 解 (1)f(x)=2cosxsin(x+)sin2x+sinxcosx=2cosx(sinxcos+cosxsin)sin2x+sinxcosx=2sinxcosx+cos2x=2sin(2x+)f(x)的最小正周期T=(2)当2x+=2k,即x=k (kZ)时,f(x)取得最小值2 (3)令2sin

6、(2x+)=1,又x,2x+,2x+=,则x=,故f-1(1)= 例4已知,cos()=,sin(+)=,求sin2的值_ 解法一 ,0 +,sin2=sin()+(+)=sin()cos(+)+cos()sin(+)解法二 sin()=,cos(+)=,sin2+sin2=2sin(+)cos()=sin2sin2=2cos(+)sin()=sin2= 学生巩固练习 1 已知方程x2+4ax+3a+1=0(a1)的两根均tan、tan,且,(),则tan的值是( )A B 2 C D 或22 已知sin=,(,),tan()= ,则tan(2)=_ 3 设(),(0,),cos()=,sin

7、(+)=,则sin(+)=_ 4 不查表求值:5 已知cos(+x)=,(x),求的值 6 已知=,且k(kZ) 求的最大值及最大值时的条件 7 如右图,扇形OAB的半径为1,中心角60,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P的位置,并求此最大面积 8 已知cos+sin=,sin+cos的取值范围是D,xD,求函数y=的最小值,并求取得最小值时x的值 参考答案 1 解析 a1,tan+tan=4a0 tan+tan=3a+10,又、(,)、(,),则(,0),又tan(+)=,整理得2tan2=0 解得tan=2 答案 B2 解析 sin=,(,),cos=则tan=,又ta

8、n()=可得tan=,答案 3 解析 (),(0, ),又cos()= 答案 4 答案 2(kZ), (kZ)当即(kZ)时,的最小值为1 7 解 以OA为x轴 O为原点,建立平面直角坐标系,并设P的坐标为(cos,sin),则PS=sin 直线OB的方程为y=x,直线PQ的方程为y=sin 联立解之得Q(sin;sin),所以PQ=cossin 于是SPQRS=sin(cossin)=(sincossin2)=(sin2)=(sin2+cos2)= sin(2+) 0,2+ sin(2+)1 sin(2+)=1时,PQRS面积最大,且最大面积是,此时,=,点P为的中点,P() 8 解 设u=

9、sin+cos 则u2+()2=(sin+cos)2+(cos+sin)2=2+2sin(+)4 u21,1u1 即D=1,1,设t=,1x1,1t x= 课前后备注 In the modern time, mainly in small and medium-sized enterprises, Foshan steel industry is the speed development by leaps and bounds, and have made remarkable achievements in upstream, but also face factors of production such as energy, raw material cost, continuously high indirectly lead to cost pressures in iron and steel第8页 共8页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁