《第六章-回归预测.ppt》由会员分享,可在线阅读,更多相关《第六章-回归预测.ppt(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、王剑王剑1西安电子科技大学经济管理学院西安电子科技大学经济管理学院年份居民消费品购买力x居民货币收入x19788.511.6197911.114.1198013.617.1198115.819.6198217.622.1198320.525.6198427.833.6198533.540.5198639.247.82一、一、“回归回归”最初的涵义最初的涵义遗传学中的名词,英国生物学家兼统计学家高尔登遗传学中的名词,英国生物学家兼统计学家高尔登首先提出来的。首先提出来的。回归现代涵义回归现代涵义研究自变量与因变量之间的关系形式的分析方法。研究自变量与因变量之间的关系形式的分析方法。目的:根据已知
2、自变量来估计和预测因变量的值。目的:根据已知自变量来估计和预测因变量的值。例如:例如:6.1 概述概述农作物亩产量农作物亩产量施肥量施肥量降雨量降雨量气温气温3西安电子科技大学经济管理学院西安电子科技大学经济管理学院二、回归分析和相关分析二、回归分析和相关分析1、相关关系的概念、相关关系的概念客观事物之间的相关关系的概念:客观事物之间的相关关系的概念:函数关系函数关系。确定性关系,对于某一变量的每一个数值,。确定性关系,对于某一变量的每一个数值,都有另一变量的确定的值与之对应。都有另一变量的确定的值与之对应。例:例:圆面积圆面积对于对于半径半径的依存关系,正方形的的依存关系,正方形的面积面积对
3、于对于边边长长的依存关系等等。的依存关系等等。相关关系相关关系。反映事物之间的非严格、不确定的线性依。反映事物之间的非严格、不确定的线性依存关系。存关系。4西安电子科技大学经济管理学院西安电子科技大学经济管理学院1、相关关系、相关关系相关关系相关关系。反映事物之间的非严格、不确定的线性依存关系。反映事物之间的非严格、不确定的线性依存关系。特点特点:事物之间在数量上确实存在一定的内在联系。表现在一个变量事物之间在数量上确实存在一定的内在联系。表现在一个变量发生说两上的变化,要影响另一个变量也相应地发生数量上的发生说两上的变化,要影响另一个变量也相应地发生数量上的变化。变化。例:例:事物之间的数量
4、依存关系不是确定的,具有一定的随机性。表事物之间的数量依存关系不是确定的,具有一定的随机性。表现在给定自变量一个数值,因变量会有若干个数值和它对应,现在给定自变量一个数值,因变量会有若干个数值和它对应,并且因变量总是遵循一定规律围绕这些数值平均数上下波动。并且因变量总是遵循一定规律围绕这些数值平均数上下波动。其原因是影响因变量发生变化的因素不止一个。其原因是影响因变量发生变化的因素不止一个。例例:影响:影响工业总产值工业总产值的因素除了的因素除了职工数职工数外,还有入定外,还有入定资产原值资产原值、流动资金流动资金和和能耗能耗等因素。等因素。成本成本劳动生产率劳动生产率5西安电子科技大学经济管
5、理学院西安电子科技大学经济管理学院2、回归分析与相关分析、回归分析与相关分析研究和测度两个或两个以上变量之间关系的方法有研究和测度两个或两个以上变量之间关系的方法有回归分析回归分析和和相关分析相关分析。相关分析相关分析。研究两个或两个以上随机变量之间线性依存关系的紧。研究两个或两个以上随机变量之间线性依存关系的紧密程度。通常用相关系数表示,多元相关时用复相关系数表示。密程度。通常用相关系数表示,多元相关时用复相关系数表示。回归分析回归分析。研究某一随机变量(因变量)与其他一个或几个普通。研究某一随机变量(因变量)与其他一个或几个普通变量(自变量)之间的数量变动的关系。变量(自变量)之间的数量变
6、动的关系。区区别别相关分析相关分析 研究变量都是随机变量,不分自变量与因变量研究变量都是随机变量,不分自变量与因变量回归分析回归分析明确的自变量和因变量,自变量是确定的普通变量,因变量是随明确的自变量和因变量,自变量是确定的普通变量,因变量是随机变量。机变量。联联系系相关分析相关分析 事物之间相互依存关系的两个不可分割的方面。在实际工作中,事物之间相互依存关系的两个不可分割的方面。在实际工作中,一般先进性相关分析,有相关系数的大小决定是否需要进行回归一般先进性相关分析,有相关系数的大小决定是否需要进行回归分析。在相关分析的基础上建立回归模型,以便进行推算、预测。分析。在相关分析的基础上建立回归
7、模型,以便进行推算、预测。回归分析回归分析6西安电子科技大学经济管理学院西安电子科技大学经济管理学院根据回归模型中含有根据回归模型中含有自变量的多少自变量的多少分为:一元回归分为:一元回归和多元回归;和多元回归;根据回归模型的根据回归模型的性质性质分为:线性回归和非线性回归;分为:线性回归和非线性回归;根据回归模型中变量的根据回归模型中变量的属性属性分为:普通回归模型和分为:普通回归模型和带虚拟变量的回归模型。带虚拟变量的回归模型。应用回归分析预测需满足条件:应用回归分析预测需满足条件:1.数据量不能太少(以多于数据量不能太少(以多于20个较好);个较好);2.预测对象与影响因素之间必须存在因
8、果关系;预测对象与影响因素之间必须存在因果关系;三、回归模型的分类:三、回归模型的分类:7西安电子科技大学经济管理学院西安电子科技大学经济管理学院6.2 一元线性回归预测一元线性回归预测已知因素已知因素 x 与因素与因素 y 有某种线性关系,设有某种线性关系,设 x 为自变量,为自变量,y 为因为因变量,现有观察值(变量,现有观察值(xi,yi),),i=1,2n,则,则 x 与与 y 之间的之间的关系可定量表示为:关系可定量表示为:其中其中 N(0,2),称为误差项(或随机干扰),一般认为其,称为误差项(或随机干扰),一般认为其服从正态分布。服从正态分布。一元线性回归预测是对两个具有线性关系
9、的变量,建立线一元线性回归预测是对两个具有线性关系的变量,建立线性回归模型,根据自变量的变动来预测因变量平均发展趋性回归模型,根据自变量的变动来预测因变量平均发展趋势的方法。势的方法。一、一、一元线性回归模型一元线性回归模型8西安电子科技大学经济管理学院西安电子科技大学经济管理学院随机干扰随机干扰 满足以下条件:满足以下条件:(1)表示随机干扰中有正、负两种干扰,平均干扰为表示随机干扰中有正、负两种干扰,平均干扰为 0;(2)表示随机干扰有相同的方差;表示随机干扰有相同的方差;(3)随机干扰不存在序列相关;随机干扰不存在序列相关;(4)随机干扰与解释变量无关。随机干扰与解释变量无关。因变量因变
10、量 y 由于受各种随机因素的影响,故它是一个随机变量,是由于受各种随机因素的影响,故它是一个随机变量,是我们预测的目标变量。我们预测的目标变量。9西安电子科技大学经济管理学院西安电子科技大学经济管理学院 实际中,用实际中,用 来作为上述关系的近似,来作为上述关系的近似,称为称为一元线性回归方程一元线性回归方程。方程中参数方程中参数a,b的估计:的估计:最小二乘法最小二乘法基本思想基本思想:使得原始数据的观测值与模型的估计值使得原始数据的观测值与模型的估计值的误差平方和达到最小。即:的误差平方和达到最小。即:二、二、参数估计参数估计10西安电子科技大学经济管理学院西安电子科技大学经济管理学院11
11、西安电子科技大学经济管理学院西安电子科技大学经济管理学院例例:已知某种商品的:已知某种商品的销售量销售量同居民的同居民的可支配收入可支配收入有关,有关,现有如下表的统计数据,试建立回归方程,并求出相应现有如下表的统计数据,试建立回归方程,并求出相应参数的最小二乘估计值。参数的最小二乘估计值。年份年份实际可支配收实际可支配收入入 x(单位:(单位:10元)元)商品的销售量商品的销售量(单位:件)(单位:件)年份年份实际可支配收实际可支配收入入x(单位:(单位:10元)元)商品的销商品的销售量(单售量(单位:件)位:件)198352267001991741815819845397136199276
12、9868319855777658199380193171986613778419948559675198764481081995842854219886707583199686085841989695800219978909612199071384421998920971912西安电子科技大学经济管理学院西安电子科技大学经济管理学院第一步:绘制散点图第一步:绘制散点图6000650070007500800085009000950010000500 550 600 650 700 750 800 850 900yi(件件)xi(10元)元)95013西安电子科技大学经济管理学院西安电子科技大学经
13、济管理学院第二步:设一元线性回归方程为第二步:设一元线性回归方程为年份年份实际可支配收实际可支配收入入 x(1010元元)商品的销售商品的销售量(件)量(件)xiyixi21983522670034974002724841984539713638463042905211985577765844186663329291986613778447715923757691987644810852215524147361988670758350806104489001989695800255613904830251990713844260191465083691991741815860450785490
14、81199276986836677227591361199380193177462917641601199485596758272125731025199584285427192364708964199686085847382240739600199789096128554680792100199892097198941480846400SUM1165113370398944771872686514西安电子科技大学经济管理学院西安电子科技大学经济管理学院第二步:设一元线性回归方程为:第二步:设一元线性回归方程为:第三步:计算回归系数得:第三步:计算回归系数得:所求的回归方程为:所求的回归方程为
15、:6000650070007500800085009000950010000500 550 600 650 700 750 800 850 900yi(件)xi(10元)元)95015西安电子科技大学经济管理学院西安电子科技大学经济管理学院三、相关系数三、相关系数在运用一元线性回归模型时,正确地判断两个在运用一元线性回归模型时,正确地判断两个变量之间的变量之间的相互关系相互关系,选择主要因素作模型的自变,选择主要因素作模型的自变量是至关重要的。量是至关重要的。yxyx16西安电子科技大学经济管理学院西安电子科技大学经济管理学院1、离差平方和的分解离差平方和的分解用样本数据模拟的回归方程用样本数
16、据模拟的回归方程 ,当给定自变量,当给定自变量 xi 后,后,与之对应的观察值与之对应的观察值 yi、计算值、计算值 与平均值与平均值 之间的关系。之间的关系。总离差观测值观测值 yi 的取值大小是上下波动的,这种现象称为变差。变差的的取值大小是上下波动的,这种现象称为变差。变差的产生是由两方面的原因造成的:产生是由两方面的原因造成的:受自变量变动的影响,即受自变量变动的影响,即 x 的的取值不同;取值不同;其他因素(包括观测和实践中产生的误差)影响。其他因素(包括观测和实践中产生的误差)影响。17西安电子科技大学经济管理学院西安电子科技大学经济管理学院则则 n 次观测值的总离差平方和为:次观
17、测值的总离差平方和为:总离差平方和总离差平方和离离18西安电子科技大学经济管理学院西安电子科技大学经济管理学院2、可决系数、可决系数 可决系数可决系数R2 的大小表明了在的大小表明了在 y 的总离差中由自变量的总离差中由自变量 x 变动所引起的变动所引起的回归偏差所占的比率,它是评价两个变过量之间线性相关关系强弱的一回归偏差所占的比率,它是评价两个变过量之间线性相关关系强弱的一个重要指标。通过个重要指标。通过R2可以判定回归模型对样本数据的拟合程度,从而评可以判定回归模型对样本数据的拟合程度,从而评价预测模型的优劣。价预测模型的优劣。0R2 1;R2=1,表明回归模型对所有的样本数据点完全拟合
18、,即,表明回归模型对所有的样本数据点完全拟合,即所有的样本数据点均落在回归直线上。所有的样本数据点均落在回归直线上。R2=0,表明回归模型无法解释,表明回归模型无法解释因变量因变量 y 的离差,预测模型没有意义。的离差,预测模型没有意义。一般情况下,一般情况下,R2 越接近越接近1,表明回归平方和占总离差平方和的比重,表明回归平方和占总离差平方和的比重越大,回归模型对样本数据拟合程度越高,模型对预测越有意义。通常,越大,回归模型对样本数据拟合程度越高,模型对预测越有意义。通常,R2在在0.8以上,即可认为拟合程度较高。以上,即可认为拟合程度较高。19西安电子科技大学经济管理学院西安电子科技大学
19、经济管理学院R2=0.9911表明该商品的表明该商品的销售量销售量的变化中有的变化中有99.11%部分可以用居部分可以用居民的民的可支配收入额可支配收入额来解释。来解释。20西安电子科技大学经济管理学院西安电子科技大学经济管理学院3、相关系数:、相关系数:如果说样本如果说样本可决系数可决系数是衡量回归方程拟合优度的统计量,是衡量回归方程拟合优度的统计量,那那相关系数相关系数就是用来衡量两个变量之间就是用来衡量两个变量之间线性相关关系线性相关关系强弱程度强弱程度的重要指标。的重要指标。两个航空公司股价的起落有关联吗?两个航空公司股价的起落有关联吗?运输行业中运输价格与所运重量有关吗?与运输距离有
20、关运输行业中运输价格与所运重量有关吗?与运输距离有关吗?关联强度有多大?吗?关联强度有多大?经济学中的生产价格指数与失业率的关联强度如何?经济学中的生产价格指数与失业率的关联强度如何?在零售业中,哪些变量与某个特定店的销售额有关?是人在零售业中,哪些变量与某个特定店的销售额有关?是人口密度,竞争者数,店的规模,广告情况,还是其他变量。口密度,竞争者数,店的规模,广告情况,还是其他变量。21西安电子科技大学经济管理学院西安电子科技大学经济管理学院3、相关系数:、相关系数:22西安电子科技大学经济管理学院西安电子科技大学经济管理学院 相关系数是一元线性回归模型中用来衡量两个变量之间相关系数是一元线
21、性回归模型中用来衡量两个变量之间线性相关关系强弱的重要指标线性相关关系强弱的重要指标相关系数相关系数的取值范围为的取值范围为-1R 1,相关系数为正值表示两个变,相关系数为正值表示两个变量之间为量之间为正正相关;相关系数为负值表示两个变量之间为相关;相关系数为负值表示两个变量之间为负负相关。相关。相关系数相关系数 R 的绝对值大小表示相关的绝对值大小表示相关程度程度的高低。的高低。23西安电子科技大学经济管理学院西安电子科技大学经济管理学院 R的绝对值越接近的绝对值越接近1,说明回归对各点的配合越密切,说明回归对各点的配合越密切,x,y的线性关的线性关系越好;反之,两者的线性关系越差;其值接近
22、系越好;反之,两者的线性关系越差;其值接近0,就可以认为这两者完,就可以认为这两者完全没有线性关系了。全没有线性关系了。相关系数到底多大,才可以确定相关系数到底多大,才可以确定x和和y具有线性关系呢,为了便于查具有线性关系呢,为了便于查对,人们将对,人们将 R 的临界值列为专门的表,计算的相关系数必须大于表上相的临界值列为专门的表,计算的相关系数必须大于表上相应的值才可以考虑所得的回归直线预测分析。否则,模型需要重新考虑应的值才可以考虑所得的回归直线预测分析。否则,模型需要重新考虑选用和计算。选用和计算。R=10R1R=0R=0-1R0R=-1yxyxyxyxyxyx24西安电子科技大学经济管
23、理学院西安电子科技大学经济管理学院四、显著性检验。四、显著性检验。(1)相关系数检验相关系数检验:相关系数的绝对值达到什么程度,才能认:相关系数的绝对值达到什么程度,才能认为两个变量之间的线性相关关系是显著的?为两个变量之间的线性相关关系是显著的?步骤:步骤:依据公式计算相关系数依据公式计算相关系数R;根据给定的显著性水平根据给定的显著性水平 ,查相关系数临界值表(,查相关系数临界值表(取值取值越小,显著性程度越高越小,显著性程度越高););查表查表R(n-2),(n 表示样本数目)表示样本数目)判别:若判别:若|R|R (n-2),表明,表明两个变量之间的线性相关两个变量之间的线性相关关系显
24、著,相关关系可信度较高,检验通过。否则,说明关系显著,相关关系可信度较高,检验通过。否则,说明模型不能用来进行预测,这时,应分析其原因,对回归模模型不能用来进行预测,这时,应分析其原因,对回归模型重新调整。型重新调整。25西安电子科技大学经济管理学院西安电子科技大学经济管理学院例:例:lR=0.9216,l=0.01,R=0.7977lR R,为此显著的正相关。,为此显著的正相关。l因此可以认为,所求得的回归直线用于近似描述因此可以认为,所求得的回归直线用于近似描述商品商品的的销售量销售量与与居民的居民的可支配收入额可支配收入额的相关关系是可靠的,的相关关系是可靠的,即可信度较高。即可信度较高
25、。26西安电子科技大学经济管理学院西安电子科技大学经济管理学院(2)t检验检验:t检验是检验回归系数是否显著异于检验是检验回归系数是否显著异于0。t 检验是通过检验是通过构造假设检验构造假设检验来检验回归模型与数据是否很好拟来检验回归模型与数据是否很好拟合的方法,通过回归模型斜率来看是否显著不等于零。合的方法,通过回归模型斜率来看是否显著不等于零。对系数对系数 b 进行检验的检验步骤:进行检验的检验步骤:构造构造t统计量:统计量:提出假设:提出假设:H0:b=0;H1:b0;根据给定的显著性水平根据给定的显著性水平,查,查t分布表得到临界值分布表得到临界值t/2(n-2),(n表表示样本数目)
26、示样本数目)判别:若判别:若|t|t/2(n-2),拒绝假设,拒绝假设H0:b=0,而接受而接受H1,即认,即认为为 b 显著异于显著异于 0,因变量,因变量 y 对自变量对自变量 x 的一元线性回归成立。若的一元线性回归成立。若|t|0.576所以在=0.05的显著性水平上,检验通过,检验说明,两变量之间线性相关关系显著。5、t、F检验。37西安电子科技大学经济管理学院西安电子科技大学经济管理学院(2)控制)控制 控制可以看成是预测的反问题,即要求控制可以看成是预测的反问题,即要求 y 落在一定范落在一定范围内围内 ,应如何控制,应如何控制 x?亦即对于给定的置信度亦即对于给定的置信度 ,求
27、出相应的,求出相应的38西安电子科技大学经济管理学院西安电子科技大学经济管理学院作业:作业:某省某省19781986年居民消费品购买力和居民货币收入统计如年居民消费品购买力和居民货币收入统计如下表:下表:1、建立一元线性回归模型。建立一元线性回归模型。2、对回归模型进行显著性检对回归模型进行显著性检验(验(=0.05)。)。3、若居民货币收入每年平均增长若居民货币收入每年平均增长19%,预测,预测1987年居民消费品购买力。年居民消费品购买力。4、对对1987年居民消费品购买力作区间年居民消费品购买力作区间预测。预测。年份居民消费品购买力x居民货币收入x年份居民消费品购买力x居民货币收入x19
28、788.511.6198427.833.6197911.114.1198533.540.5198013.617.1198639.247.8198115.819.6198217.622.1198320.525.6(单位:亿元)(单位:亿元)39西安电子科技大学经济管理学院西安电子科技大学经济管理学院3.4 一元非线性回归常见的一元非线性模型有下述几种:常见的一元非线性模型有下述几种:究竟选用哪一种模型拟合,可先将样本序列画图观察其曲线形状来判定。40西安电子科技大学经济管理学院西安电子科技大学经济管理学院x0y0yx0yx0yxa0yx(1)(2)(3)(4)(5)41西安电子科技大学经济管理学院西安电子科技大学经济管理学院求解方法为首先将上述非线性模型转化为线性模型。例如42西安电子科技大学经济管理学院西安电子科技大学经济管理学院