数学建模模糊数学讲义.ppt

上传人:得****1 文档编号:79213158 上传时间:2023-03-20 格式:PPT 页数:166 大小:3.06MB
返回 下载 相关 举报
数学建模模糊数学讲义.ppt_第1页
第1页 / 共166页
数学建模模糊数学讲义.ppt_第2页
第2页 / 共166页
点击查看更多>>
资源描述

《数学建模模糊数学讲义.ppt》由会员分享,可在线阅读,更多相关《数学建模模糊数学讲义.ppt(166页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、模模=建建模糊数学模型分析模糊数学模型分析陈陈 梅梅 香香2009-7-182009-7-18模模=建建 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。一句话概括的讲,用数学解决实际问题即数学的应用我们把现实生活中或生产实践中所遇到的问题,加以分析,抽化出实质的因素,而后应用数学知识解决数学建模竞赛,它看重的是三个步骤:1、建立模型:实际问题数学问题;2、数学解答:数学问题数学解;3、模型检验:数学解实际问题的解决。

2、建模思想n用数学语言刻划各种现象。n确定性的数学模型:用确定性的数学语言刻划必然现象。n随机性的数学模型:用概率刻划随机现象。n模糊性的数学模型:用模糊数学刻划模糊现象。模模=建建与模糊数学相关的问题(一)与模糊数学相关的问题(一)模糊数学研究和处理模糊性现象的数学(概念与其对立面之间没有一条明确的分界线)与模糊数学相关的问题(一)模糊分类问题已知若干个相互之间不分明的模糊概念,需要判断某个确定事物用哪一个模糊概念来反映更合理准确模糊相似选择 按某种性质对一组事物或对象排序是一类常见的问题,但是用来比较的性质具有边界不分明的模糊性模模=建建与模糊数学相关的问题(二)模糊聚类分析根据研究对象本身

3、的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系 模糊层次分析法两两比较指标的确定模糊综合评判综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果 模模=建建模糊数学是研究什么的?模糊现象:模糊现象:模糊现象:模糊现象:“亦此亦彼亦此亦彼”的不分明现象的不分明现象模糊数学模糊数学研究和揭示模糊现研究和揭示模糊现象的定量处理方法。象的定量处理方法。模模=建建什么是模糊数学秃子悖论秃

4、子悖论:天下所有的人都是秃子!天下所有的人都是秃子!如果一个有X根头发的人被称为秃子,那么,有X+1根头发的人也是秃子。所以,(X+1)+1根头发的还是秃子。以此类推,无论你有几根头发都是秃子。模模=建建伊索寓言的故事一个路人问一位智者,要走几小时才能到达某地。智者默不作答,等过路人走了一小段路以后,他才把那人叫回,答以时间“3小时左右小时左右”赞成赞成说话要有根据回答十分精确反对反对说话要灵活处理路人又没问精确时间从精确到模糊精确答案确定:要么是,要么不是答案确定:要么是,要么不是f f:A A 0,1 0,1他他是是学生?他学生?他不是不是学生?学生?模糊答案不定:也许是,也许不是,也许介

5、于之间答案不定:也许是,也许不是,也许介于之间 A A:U U 0,1 0,1他他是是成年人?他成年人?他不是不是成年人?他成年人?他大概是大概是成年人?成年人?模模=建建模糊概念:从属于该概念到不属于该概念之间模糊概念:从属于该概念到不属于该概念之间无明显分界线无明显分界线年轻、重、热、美、厚、薄、快、慢、大、小、高、低、远、近、长、短、贵、贱、强、弱、软、硬、阴天、多云。共同特点:模糊概念的外延不清楚。模模=建建 术语来源术语来源Fuzzy:毛绒绒的,边界不清楚的模糊,不分明,弗齐,弗晰,勿晰模糊概念导致模糊现象模糊数学就是用数学方法研究模糊现象。模糊数学就是用数学方法研究模糊现象。模模=

6、建建用数学的眼光看世界,可把我们身边的现象划分为:1.确定性现象:如水加温到100oC就沸腾,这种现象的规律 性靠经典数学经典数学去刻画(指在一定条件下一定会发生的现象)2.随机现象:如掷硬币,观看那一面向上,这种现象的规律 性靠概率统计概率统计去刻画;3.模糊现象:如 “今天天气很热”,“小伙子很帅”,等等。此话准确吗?有多大的水分?靠模糊数学模糊数学去刻画。模模=建建随机性与模糊性之区分随机性与模糊性之区分随机性随机性事件本身具有明确含意事件本身具有明确含意事件是否出现的不确定性事件是否出现的不确定性0,1上概率分布函数描述上概率分布函数描述模糊性模糊性事物的概念本身是模糊的事物的概念本身

7、是模糊的概念的外延的模糊不确定性:模糊性概念的外延的模糊不确定性:模糊性0,1上的隶属函数描述上的隶属函数描述经典数学和统计数学经典数学和统计数学以经典集合论经典集合论为理论基础,“非此即彼”统计数学统计数学把必然现象扩大到偶然;模糊数学模糊数学把清晰现象扩大到模糊。模糊数学的创立及发展uuZadeh 扎德教授扎德教授19651965年,年,年,年,模糊集合论模糊集合论模糊集合论模糊集合论uu“隶属函数隶属函数隶属函数隶属函数”“模糊数学模糊数学模糊数学模糊数学”的诞生的诞生的诞生的诞生uu基本思想基本思想用属于程度代替属于或不属于用属于程度代替属于或不属于用属于程度代替属于或不属于用属于程度

8、代替属于或不属于某个人属于秃子的程度为某个人属于秃子的程度为0.8,另一个人属于另一个人属于秃子的程度为秃子的程度为0.3等等.日本与欧美的模糊技术热 1 从八十年代起开展了模糊控制的研究与开发 2 九十年代日本兴起模糊控制技术是高新技术领域的一次革命 3 模糊产品给日本带来巨额利润 4 日本模糊技术21世纪的长远规划(6个重点课题)1)基础研究 2)模糊电脑:实现F信息的电脑处理,电脑的构造、逻辑记忆 3)机器智能:使机器能高速地识别和判断模糊信息 4)人机系统:F数据库、F专家系统和自然语言处理技术 5)人与社会系统:进行复杂的人类行为分析,包括决策支持 系统、医疗诊断系统、行为心理透视系

9、统及社会经济模型 6)自然系统:研究和模拟自然现象,如辨别物理变化和化学 变化、判断大气污染状况,地震预测等 我国的模糊技术研究我国的模糊技术研究 1)70年代后期传到我国,起步晚,但发展快,“国际四强”2)理论研究居世界领先地位,但应用与发达国家有差距 3)“模糊技术产业化”3)近几年国内掀起了模糊控制技术的研究与开发热,成绩喜人 -企业:大型家电集团已成功开发了国产模糊控制洗衣机 如:“小天鹅”,“海尔”,“小鸭”,“金羚”等名牌智能洗衣机 -研究机构,高校:郑州轻工业学院模糊控制中心 清华大学热能工程系 北京师范大学模糊控制中心 西南交通大学智能控制中心 模糊技术的研究热点模糊技术的研究

10、热点 模糊控制技术的主要特点:模糊控制技术的主要特点:-在设计系统时不需要建立被控对象的数学模型,只要求掌握现在设计系统时不需要建立被控对象的数学模型,只要求掌握现 场操作人员或者有关专家的经验知识或者操作数据。场操作人员或者有关专家的经验知识或者操作数据。-系统的鲁棒性好,尤其适合非线性时变,滞后系统的控制。系统的鲁棒性好,尤其适合非线性时变,滞后系统的控制。-从工业过程的定性认识出发,较容易建立语言变量控制规则。从工业过程的定性认识出发,较容易建立语言变量控制规则。-被控过程节能好被控过程节能好 -规则集易理解修改规则集易理解修改 -具有并行操作特点,开发成本低具有并行操作特点,开发成本低

11、 模糊神经网络技术 -神经网络的优点:并行计算,分布式信息存储,容错能力强,自学习功能。-神经网络的缺点:不适合表达基于if-then规则的知识 -模糊逻辑的优点:能处理模糊信息,非线性和其它不适定问题,它比较适合于表达基于规则的知识。-模糊逻辑的缺点:缺乏自学习和自适应能力 -模糊神经网络=神经网络+模糊逻辑 模糊神经网络的技术成果很多,如美国半导体公司的NeuFuz,Motorola的新型芯片,我国的模糊神经网络开发系统FNNDS(北航)模糊神经网络的未来研究方向模糊神经网络的未来研究方向 -研究模糊逻辑与神经网络的对应关系 -拓展模糊神经网络的应用范围,寻找一 般模糊集的模糊神经元网络的

12、学习方法 -用模糊逻辑加强神经网络的学习速度 -对成熟的网络模型和学习算法,研制相应 的神经网络控制芯片 -模糊神经网络与新发展技术的结合:如Wavelet,Chaos,GA,RS,DM等。模模=建建 模糊数学不是让数学变成模模糊糊的东西,而是让数学模糊数学不是让数学变成模模糊糊的东西,而是让数学进入模糊现象这个禁区,即用精确的数学方法去研究处理进入模糊现象这个禁区,即用精确的数学方法去研究处理模糊现象模糊现象,是研究和描述模糊性线性的一种数学工具,是研究和描述模糊性线性的一种数学工具,表表达精确达精确(消除模糊)(消除模糊)的意思的意思!模模=建建模糊数学的产生不仅形成了一门崭新的数学学科,

13、而且也形成了一种崭新的思维方法,它告诉我们存在亦真亦假的命题,从而打破了以二值逻辑为基础的传统思维,使得模糊推理成为严格的数学方法。随着模糊数学的发展,模糊理论和模糊技术将对于人类社会的进步发挥更大的作用。模模=建建模糊数学的广泛应用性模糊数学的广泛应用性模糊技术是模糊技术是21世纪的核心技术,其应用几乎渗透到自然科学世纪的核心技术,其应用几乎渗透到自然科学与社会科学的所有领域:与社会科学的所有领域:1)软科学方面:投资决策、企业效益评估、经济宏观调控)软科学方面:投资决策、企业效益评估、经济宏观调控等等 2)地震科学方面:地震预报、地震危害分析)地震科学方面:地震预报、地震危害分析 3)工业

14、过程控制方面:模糊控制技术是复杂系统控制的有)工业过程控制方面:模糊控制技术是复杂系统控制的有效手段效手段 4)家电行业:模糊家电产品)家电行业:模糊家电产品,提高了机器的提高了机器的“IQ”5)航空航天及军事领域:飞行器对接)航空航天及军事领域:飞行器对接C3I指挥自动化系统,指挥自动化系统,NASA 6)人工智能与计算机高技术领域:模糊推理机、)人工智能与计算机高技术领域:模糊推理机、F专家系统、专家系统、F数据库、数据库、F语言识别系统、语言识别系统、F机器人等,机器人等,F-prolog、F-C等等 7)其它:核反应控制、医疗诊断等)其它:核反应控制、医疗诊断等模模=建建1.Fuzzy

15、 集合及运算集合及运算1.模糊概念模糊概念风的强弱人的胖瘦年龄大小个子高低 在普通集合中,论域中的元素(如在普通集合中,论域中的元素(如a)与集合(如)与集合(如A)之间的关系是属)之间的关系是属于(于(aA),或者不属于,它所描述的是非此即彼的清晰概念。但在现),或者不属于,它所描述的是非此即彼的清晰概念。但在现实生活实生活 中并不是所有的事物都能用清晰的概念来描述,如中并不是所有的事物都能用清晰的概念来描述,如:为了对事物进行识别,必须对事物按不同的要求进行分类。许多事物可以为了对事物进行识别,必须对事物按不同的要求进行分类。许多事物可以为了对事物进行识别,必须对事物按不同的要求进行分类。

16、许多事物可以为了对事物进行识别,必须对事物按不同的要求进行分类。许多事物可以依据一定的标准进行分类。用于这种分类的数学工具就是依据一定的标准进行分类。用于这种分类的数学工具就是依据一定的标准进行分类。用于这种分类的数学工具就是依据一定的标准进行分类。用于这种分类的数学工具就是集合论集合论集合论集合论。集合的概念集合的概念uu解决精确性的集合问题可以用解决精确性的集合问题可以用经典集合论经典集合论。uu世世界界上上大大多多数数事事物物具具有有模模糊糊性性。为为了了描描述述具具有模糊性的事物,引入有模糊性的事物,引入模糊集合模糊集合的概念。的概念。经典集合经典集合:具有某种特性的所有元素的总和。具

17、有某种特性的所有元素的总和。模糊集合模糊集合:在在不不同同程程度度上上具具有有某某种种特特性性的的所所有有元元素素的的总和。总和。uu集合是数学中最基本的概念之一。集合是数学中最基本的概念之一。集合是数学中最基本的概念之一。集合是数学中最基本的概念之一。uu讨讨讨讨论论论论某某某某一一一一概概概概念念念念的的的的外外外外延延延延时时时时总总总总离离离离不不不不开开开开一一一一定定定定的的的的范范范范围围围围。这这这这个个个个讨讨讨讨论论论论的的的的范范范范围围围围,称称称称为为为为“论论论论域域域域”,论论论论域域域域中中中中的的的的每每每每个个个个对对对对象象象象称称称称为为为为“元元元元素

18、素素素”。一一一一般般般般记记记记论论论论域域域域为为为为U U U U,表表表表达达达达了了了了问题的总范围。问题的总范围。问题的总范围。问题的总范围。uu所谓集合,是指具有某种特定属性的对象的全体。所谓集合,是指具有某种特定属性的对象的全体。所谓集合,是指具有某种特定属性的对象的全体。所谓集合,是指具有某种特定属性的对象的全体。uu定定定定义义义义:给给给给定定定定论论论论域域域域UU(UU、VV、XX、Y Y ),UU中中中中具具具具有有有有某某某某种种种种特特特特定定定定属属属属性性性性的的的的元元元元素素素素(u u、v v、x x、y y )的全体,称为的全体,称为的全体,称为的全

19、体,称为UU上的一个集合上的一个集合上的一个集合上的一个集合(A(A、BB、C C、)。uu表示集合的几种方法表示集合的几种方法(1 1)列举法:)列举法:)列举法:)列举法:列写出集合中的全体元素。列写出集合中的全体元素。列写出集合中的全体元素。列写出集合中的全体元素。适用于元素有限的集合。适用于元素有限的集合。适用于元素有限的集合。适用于元素有限的集合。(2 2)定义法:)定义法:)定义法:)定义法:以集合中元素的共性来描述集合的一种方法。以集合中元素的共性来描述集合的一种方法。以集合中元素的共性来描述集合的一种方法。以集合中元素的共性来描述集合的一种方法。适用于有许多元素而不能一一列举的

20、集合。适用于有许多元素而不能一一列举的集合。适用于有许多元素而不能一一列举的集合。适用于有许多元素而不能一一列举的集合。2、模糊集合常用术语及其表述、模糊集合常用术语及其表述精确集合精确集合(非此即彼):(非此即彼):A=X|X6精确集合的隶属函数(特征函数):精确集合的隶属函数(特征函数):模糊集合模糊集合:如果如果X是对象是对象x的的集合,则集合,则X的模糊集合的模糊集合 A:称为模糊集称为模糊集A的的隶属函数。隶属函数。定义定义 设A是论域U到0,1的一个映射,即 在模糊数学中,我们称没有明确边界(没有清晰外延)的集合为模糊集合。常用大写字母下加波浪线的形式来表示,如 、等。元素属于模糊

21、集合的程度用隶属度隶属度或或模糊度模糊度来表示。用于计算隶属度的函数称为隶属函数隶属函数,即模糊集的特征函数。隶属度隶属度即论域元素属于模糊集合的程度。用 来表示。隶属度的值为0,1闭区间上的一个数,其值越大,表示该元素属于模糊集合的程度越高,反之则越低。计算隶属度的函数称为隶属函数隶属函数。用 表示。隶属度和隶属函数的表示形式看起来很相似,但是它们的意义是完全不一样的。指论域中特定元素xi属于A的隶属度,而 中的x是一个变量,可表示论域中的任一元素。隶属函数的性质:a)定义为有序对;b)隶属函数在0和1之间;c)其值的确定具有主观性和个人的偏好。X称为论域或域。构造模糊集就是要:确定合适的论

22、域和指定适当的隶属函数。113精确集合模糊集合1136模模=建建(1)(1)向量表示法向量表示法(2)(2)扎德表示法扎德表示法 当论域当论域U U由有限多个元素组成时,模糊集合可用向量表示法或扎德表由有限多个元素组成时,模糊集合可用向量表示法或扎德表示法表示。设示法表示。设3 模糊集合的表示模糊集合的表示例:设论域U=钢笔,衣服,台灯,纸,他们属于学习用品的隶属度分别为:1,0,0.6,0.8,则模糊集合学习用品可分别用向量表示法和扎德表示法表示如下:“20岁左右”原集合(年龄).,17,18,19,20,21,22,23,.,17,18,19,20,21,22,23,.“20岁左右”这个模

23、糊集可以表示为:0.8/18+0.9/19+1/20+0.9/21+0.8/120.8/18+0.9/19+1/20+0.9/21+0.8/12 0.6/17+0.7/18+0.8/19+1/20+0.9/21+0.7/22+0.6/230.6/17+0.7/18+0.8/19+1/20+0.9/21+0.7/22+0.6/23.隶属度0,1集合元素模模=建建(3)序偶表示法:举例:X=上海 北京 天津 西安为城市的集合。模糊集合 C=“对城市的爱好”可以表示为:C=(上海,0.8),(北京,0.9),(天津,0.7),(西安,0.6)模模=建建如扎德给出的计算老年人模糊集合的隶属函数为:其论

24、域为0,200的连续区间,论域上任一元素的隶属度,可通过隶属函数求得。当论域当论域U为连续区域时为连续区域时,模糊集合可用隶属函数来表示当论域U由无限个元素组成时,可用扎德表示法表示上式表示模糊集合 由论域U上无限多个元素与其相应的隶属度关系组成。模模=建建模模=建建隶属函数的确定隶属函数的确定1.模糊统计方法模糊统计方法 与概率统计类似,但有区别:若把概率与概率统计类似,但有区别:若把概率统计比喻为统计比喻为“变动的点变动的点”是否落在是否落在“不动的不动的圈圈”内,则把模糊统计比喻为内,则把模糊统计比喻为“变动的圈变动的圈”是否盖住是否盖住“不动的点不动的点”.2.指派方法指派方法 一种主

25、观方法,一般给出隶属函数的解一种主观方法,一般给出隶属函数的解析表达式。析表达式。3.借用已有的借用已有的“客观客观”尺度尺度模模=建建 对论域U上一个确定元素u0是否属于论域上的一个边界可变的普通集合A*的问题,针对不同的对象进行调查统计,再根据模糊统计规律计算出u0的隶属度。用模糊统计法确定隶属度的基本思想模糊统计法的具体步骤模糊统计法的具体步骤 (1 1)确定一个论域)确定一个论域U U;(2 2)在论域中选择一个确定的元素)在论域中选择一个确定的元素u u0 0;(3 3)考虑)考虑U U上的一个边界可变的普通集合上的一个边界可变的普通集合A*A*;(4 4)就)就u u0 0是否属于

26、是否属于A*A*的问题针对不同对象调查统计,并记录结果;的问题针对不同对象调查统计,并记录结果;(5 5)根据模糊统计规律)根据模糊统计规律 计算计算u u0 0属于模糊集合属于模糊集合A A的隶属度的隶属度模模=建建18251730172818251635142518301835183516251530183517351825182518352030183016302035183018301525183015281628183018301630183518251825162818301630162818351835172716281528163019281530152617251536183

27、017301835163515251525182816301528183518301728183515281830152515251830162415251632152718351625182816281830183518301830173018301835163018351725153018251730142518261829183518281830182516351729182517301628183016281530153515302030203016251730153018301630182818351630153018351835183017301635173015251835153

28、0152515301830172518291828模糊统计法举例例:用模糊统计法确定27岁的人属于“青年人”模糊集合的 隶属度。武汉工业大学张南伦教授调查统计结果如下:武汉工业大学张南伦教授调查统计结果如下:表1 关于“青年人”年龄的调查模模=建建 由张教授调查统计结果可知,共调查统计129次,其中27岁的人属于“青年人”这个边界可变的普通集合的次数为101次。根据模糊统计规律计算隶属度为:模模=建建 求取论域中足够多元素的隶属度,根据这些隶属度求出隶属函数。具体步骤为:求取论域中足够多元素的隶属度;求隶属函数曲线。以论域元素为横坐标,隶属度为纵坐标,画出足够多元素的隶属度(点),将这些点连起

29、来,得到所求模糊结合的隶属函数曲线;求隶属函数。将求得的隶属函数曲线与常用隶属函数曲线相比较,取形状相似的隶属函数曲线所对应的函数,修改其参数,使修改参数后的隶属函数的曲线与所求隶属函数曲线一致或非常接近。此时,修改参数后的函数即为所求模糊结合的隶属函数。隶属函数的确定模模=建建年龄隶属次数隶属度年龄隶属次数隶属度年龄隶属次数隶属度15270.2122129129800.6216510.3923129130770.6017670.5224129131270.21181240.96251280.9932270.21191250.97261030.8033260.20201291271010.78

30、34260.2021129128990.7735250.19表2 1535岁的人属于青年人的隶属度由表1可分别计算出1535岁的人属于模糊集合“青年人”的隶属度,计算结果如下表:例:根据张南伦教授的统计结果,求 青年人模糊集合的隶属函数。模模=建建根据表2的计算结果,以年龄为横坐标,隶属度为纵坐标,绘出隶属函数曲线如下图所示。年龄(岁)年龄(岁)15152020252530303535隶隶属属度度1 10 0模模=建建46 所求隶属函数曲线与降半哥西型函数曲线较相似,降半哥西型隶属函数为:修改降半哥西型隶属函数参数,使其函数曲线与所求隶属函数曲线非常接近。此时取=1/25,a=24.5,=2。

31、参数修改后的降半哥西型函数即为模糊集合“青年人”的隶属函数。即:隶属函数参数化1.三角形隶属函数uu参数参数a,b,ca,b,c确定了三角形确定了三角形MFMF三个顶点的三个顶点的x x坐标。坐标。uu参参数数a,b,c,da,b,c,d确确定定了了梯梯形形四四个个角角的的x x坐坐标标。当当b b=c c时时,梯形就退化为三角形。梯形就退化为三角形。2.梯形隶属函数3.高斯形隶属函数uu高高斯斯MFMF完完全全由由c c和和 决决定定,c c代代表表MFMF的的中中心心;决决定了定了MFMF的宽度。的宽度。4.一般钟形隶属函数uu参数完全由参数完全由b b通常为正;如果通常为正;如果b b0

32、,b的条件限制,则满足条件的集合为:ABab=(3,2)(5,2)(5,4)对AB施加ab的条件限制后得到的新的集合定义为关系,记做R。则:Rab=(3,2)(5,2)(5,4)。一一.关系与模糊关系关系与模糊关系模模=建建R Rabab=A=A1 0 0 01 0 0 03 1 0 03 1 0 05 1 1 05 1 1 0 2 4 62 4 6B B关系R可以用矩阵形式来表示。一般形式为:则对上例有:模模=建建 2、模糊关系,是普遍关系的推广,普通关系只能描述元素间关系的有无,而模糊关系则描述元素之间关系的多少。例例 在医学上常用公式:体重B(公斤)=身高A(厘米)100来表示标准体重,

33、这就给出了身高(A)与体重(B)的普通关系。若A=140,150,160,170,180 B=40,50,60,70,80 身高与体重的普通关系如表3所示:R(A,B)BiAi40506070801401000015001000160001001700001018000001表3 身高与体重的普通关系模模=建建但人的胖瘦不同,对于非标准的情况,身高与体重的关系应该以接近标准的程度来描述,这就导致产生如上表所示的模糊关系。它能更深刻、更完整地给出身高与体重的对应关系。R(A,B)BiAi405060708014010.80.20.101500.810.80.20.11600010.80.2170

34、000.810.818000.10.20.81表4 身高与体重的模糊关系模模=建建用A表示学生集合:A=徐X,张X,王X,用B表示语种集合:B=英,日,俄,法。若用成绩除以100折合成隶属度来描述掌握外语的程度,则由如表5可以构造出一个在AB直积空间中存在的模糊关系 ,用它来表示小组成员“掌握外语程度”的模糊关系。英语俄语日语法语徐X0.850.750.700张X0.90000王X0.70000.8表5 掌握外语的程度例例 设有一组同学(徐X,张X,王X),他们选修英,日,俄,法四种外语中的任几门,他们选修和结业成绩如下:徐X 英语 85 徐X 日语 70 徐X 俄语 75 张X 英语 90

35、王X 英语 70 王X 法语 80 模模=建建模模=建建二、模糊矩阵二、模糊矩阵 1、矩阵 矩阵可以用来表现关系,如果集合A有m个元素,集合B有n个元素、我们可以用矩阵R来表示由集合A到集合B的关系 r r1111 r r1212 r r1n 1n R=rR=r2121 r r2222 r r2n2n r rm1 m1 r rm2m2 r rmnmn其中rij=0或1,1im,1jn。模模=建建2.模糊矩阵模糊矩阵对上例有:对于有限论域对于有限论域 X=x1,x2,xm和和Y=y1,y2,yn,则则X 到到Y 模糊关系模糊关系 可用可用mn 阶模糊矩阵表示,即阶模糊矩阵表示,即 =(rij)m

36、n,其中其中rij=(xi,yj)0,1表示表示(xi,yj)关于模糊关系关于模糊关系 的相关的相关程度程度.又若又若 为布尔矩阵时为布尔矩阵时,则关系则关系 为普通关系为普通关系,即即xi 与与 yj 之之间要么有关系间要么有关系(rij=1),要么没有关系要么没有关系(rij=0).0.85 0.75 0.70 0 0.85 0.75 0.70 0 R=0.90 0 0 0R=0.90 0 0 0 0.70 0 0 0.80 0.70 0 0 0.80三、模糊关系的运算三、模糊关系的运算精确关系模糊关系同一空间表示二个或二个以上集合元素之间关联、交互、互连是否存在。表示二个或二个以上集合元

37、素之间关联、交互、互连是否存在或不存在的程度。举例模模=建建模糊矩阵的运算模糊矩阵的运算(1)并、交、补运算设设 、为同一论域为同一论域U U上的两个模糊关系矩阵,上的两个模糊关系矩阵,。则其并、交、补运算分别定义为:。则其并、交、补运算分别定义为:,并运算:交运算:补运算:模模=建建(2)相等与包含(3)转置运算模糊关系矩阵的转置与普通矩阵的转置相似,即将行和列互相交换,记作 。例如:设同一论域上的两个模糊关系矩阵,。若所有的 ,则称 包含 ,或 包含于 ,记作 。若所有的 ,则称 与 相等。记作 。模模=建建(4)合成运算回忆普通矩阵的乘法运算设模糊关系 ,则 对 的合成定义为:为合成符号

38、为合成符号模糊关系矩阵的合成与普通矩阵的乘法运算过程一样,运算符号不同。(5)(5)幂运算幂运算依次类推依次类推模模=建建四四.模糊矩阵的模糊矩阵的 -截矩阵截矩阵 定义定义 设设A=(aij)mn,对任意的对任意的 0,1,称称A=(aij()mn,为模糊矩阵为模糊矩阵A的的 -截矩阵截矩阵,其中其中 当当aij 时,时,aij()=1;当;当aij 时,时,aij()=0.显然,显然,A的的 -截矩阵为布尔矩阵截矩阵为布尔矩阵.模模=建建五五.模糊等价关系模糊等价关系 若模糊关系若模糊关系R是是X上上各元素之间的各元素之间的模糊关系,且满足:模糊关系,且满足:(1)(1)自反性:自反性:R

39、(x,x)=1;(2)(2)对称性:对称性:R(x,y)=R(y,x);(3)(3)传递性:传递性:R2 R,则称则称模糊关系模糊关系R是是X上上的一个的一个模糊等价关系模糊等价关系.当论域当论域X=x1,x2,xn为有限时为有限时,X 上的一个上的一个模糊等模糊等价关系价关系R就是模糊等价矩阵就是模糊等价矩阵,即即R满足:满足:R2R(rikrkj)|1kn rij).模模=建建模糊相似关系模糊相似关系 若模糊关系若模糊关系 R 是是 X 上各元素之间的上各元素之间的模糊关系,且满足:模糊关系,且满足:(1)自反性:自反性:R(x,x)=1;(2)对称性:对称性:R(x,y)=R(y,x);

40、则称则称模糊关系模糊关系 R 是是 X 上的一个上的一个模糊相似关系模糊相似关系.当论域当论域X=x1,x2,xn为有限时,为有限时,X 上的一个上的一个模糊相模糊相似关系似关系 R 就是模糊相似矩阵,即就是模糊相似矩阵,即R满足:满足:(1)自反性:自反性:I R(rii=1);(2)对称性:对称性:RT=R(rij=rji).模模=建建3 模糊模型识别模糊模型识别模型识别模型识别 已知某类事物的若干标准模型,现有这类事物中的一个已知某类事物的若干标准模型,现有这类事物中的一个具体对象,问把它归到哪一模型,这就是模型识别具体对象,问把它归到哪一模型,这就是模型识别.模型识别在实际问题中是普遍

41、存在的模型识别在实际问题中是普遍存在的.例如,学生到例如,学生到野外采集到一个植物标本,要识别它属于哪一纲哪一目;野外采集到一个植物标本,要识别它属于哪一纲哪一目;投递员投递员(或分拣机或分拣机)在分拣信件时要识别邮政编码等等,在分拣信件时要识别邮政编码等等,这些都是模型识别这些都是模型识别.模糊模型识别模糊模型识别 所谓模糊模型识别所谓模糊模型识别,是指在模型识别中是指在模型识别中,模型是模糊的模型是模糊的.也就是说也就是说,标准模型库中提供的模型是模糊的标准模型库中提供的模型是模糊的.模模=建建模型识别模型识别的原理的原理 为了能识别待判断的对象为了能识别待判断的对象x=(x1,x2,xn

42、)T是属于已是属于已知类知类A1,A2,Am中的哪一类?中的哪一类?事先必须要有一个一般规则事先必须要有一个一般规则,一旦知道了一旦知道了x的值的值,便能便能根据这个规则立即作出判断根据这个规则立即作出判断,称这样的一个规则为称这样的一个规则为判别规判别规则则.判别规则往往通过的某个函数来表达判别规则往往通过的某个函数来表达,我们把它称我们把它称为为判别函数判别函数,记作记作W(i;x).一旦知道了一旦知道了判别函数并确定了判别函数并确定了判别规则,最好将已判别规则,最好将已知类别的对象代入检验,这一过程称为知类别的对象代入检验,这一过程称为回代检验回代检验,以便,以便检验你的检验你的判别函数

43、和判别函数和判别规则是否正确判别规则是否正确.模模=建建最大隶属原则最大隶属原则 最大隶属原则最大隶属原则 设论域设论域X=x1,x2,xn 上有上有m个模糊子集个模糊子集A1,A2,Am(即即m个模型个模型),),构成了一个构成了一个标准模型库标准模型库,若对任一若对任一x0X,有有k1,2,m,使得使得u Ak(x0)=u A1(x0),u A2(x0),u Am(x0),则认为则认为x0相对隶属于相对隶属于Ak.最大隶属原则最大隶属原则 设论域设论域X上有一个标准模型上有一个标准模型 ,待待识别的对象有识别的对象有n个:个:x1,x2,xnX,如果有某个如果有某个xk满足满足u(xk)=

44、u (x1),u (x2),u(xn),则应优先录取则应优先录取xk,xk最属于最属于 .模模=建建 例例1 1 在论域在论域X=0,1000,100分数上建立三个表示学习成绩的分数上建立三个表示学习成绩的模糊集模糊集A=“优优”,B=“良良”,C=“差差”.当一位同学的成绩为当一位同学的成绩为8888分分时时,这个成绩是属于哪一类?这个成绩是属于哪一类?A(88)=0.8模模=建建B(88)=0.7模模=建建A(88)=0.8,B(88)=0.7,C(88)=0.根据最大隶属原则根据最大隶属原则,88,88分这个成绩应隶属于分这个成绩应隶属于A,即即为为“优优”.例例2 论论域域 X=x1(

45、71),x2(74),x3(78)表示三个学生表示三个学生的成绩的成绩,那一位学生的成绩最差?那一位学生的成绩最差?C(71)=0.9,C(74)=0.6,C(78)=0.2,根据最大隶属原则根据最大隶属原则,x1(71)最差最差.例例3 3 细胞染色体形状的模糊识别细胞染色体形状的模糊识别 细胞染色体形状的模糊识别就是几何图形的模糊识别细胞染色体形状的模糊识别就是几何图形的模糊识别,而几何图形常常化为若干个三角图形而几何图形常常化为若干个三角图形,故设论域为三角形全故设论域为三角形全体体.即即X=(A,B,C)|A+B+C=180,ABC 标准模型库标准模型库=E(正三角形正三角形),),R

46、(直角三角形直角三角形),),I(等腰三角等腰三角形形),),IR(等腰直角三角形等腰直角三角形),),T(任意三角形任意三角形).).某人在实验中观察到一染色体的几何形状,测得其三某人在实验中观察到一染色体的几何形状,测得其三个内角分别为个内角分别为88,70,22,88,70,22,即待识别对象为即待识别对象为x0=(88,70,22).=(88,70,22).问问x0应隶属于哪一种三角形?应隶属于哪一种三角形?模模=建建“等腰”?“等边”?“直角”?I:等腰E:等边R:直角T:普通U=(A,B,C)|A=B=C=0ABC模模=建建等腰三角形需求当A=B或B=C时,函数值为1当两个角越接近

47、,函数值越大当A=120,B=60,C=0时,函数值为0确定隶属度函数I(A,B,C)=1 min(A-B,B-C)/60模模=建建等边三角形需求当A=B=C时,函数值为1当三个角越接近时,函数值越大当A=180,B=C=0时,函数值为0确定隶属度函数E(A,B,C)=1 (A-C)/180模模=建建直角三角形需求A=90时,函数值为1A越接近90,函数值越大确定隶属度函数R(A,B,C)=1|A-90|/90模模=建建普通三角形普通三角形就是非I,E,R的情况T=(IER)=IER确定隶属函数T=(1 R)(1 E)(1 I)模模=建建(88,70,22)计算结果I=0.7E=0.63R=0

48、.98T=0.02结论大致属于直角三角形大致属于直角三角形R练习:(94,50,36)?(80,70,30)?)?(120,50,10)?)?模模=建建例例4模模=建建模模=建建 设在论域设在论域X=x1,x2,xn上有上有m个模糊子集个模糊子集A1,A2,Am(即即m个模型个模型),构成了一个标准模型库构成了一个标准模型库.被识别的对象被识别的对象B也是也是X上一个模糊集上一个模糊集,它与标准模型库中那一个模型最贴近?它与标准模型库中那一个模型最贴近?这是第二类模糊识别问题这是第二类模糊识别问题.择近原则择近原则(多指标)(多指标)内积与外积的性质内积与外积的性质(1)(1)(A B)c=A

49、cBc;(2)(2)(AB)c=Ac Bc;(3)(3)A Ac 1/2;(4)(4)AAc 1/2.证明证明(1)(1)(A B)c=1-A(x)B(x)|xX =1-A(x)1-B(x)|xX=Ac(x)Bc(x)|xX=AcBc.证明证明(3)(3)A Ac=A(x)1-A(x)|xX 1/2|xX 1/2.模模=建建例例4医疗纠纷的评价与估计医疗纠纷的评价与估计例例5从择近原则看数学在医学中的应用从择近原则看数学在医学中的应用例例6蠓的分类蠓的分类 左图给出了左图给出了9只只Af和和6只只Apf蠓的触角长和翼长蠓的触角长和翼长数据数据,其中其中“”表示表示Apf,“”,“”表示表示Af

50、.根据触角长根据触角长和翼长来识别一个标本是和翼长来识别一个标本是Af还是还是Apf是重要的是重要的.给给定定一一只只Af族族或或Apf族族的的蠓蠓,如如何何正正确确地地区区分分它它属属于哪一族?于哪一族?将将你你的的方方法法用用于于触触角角长长和和翼翼长长分分 别别 为为(1.24,1.80),(1.28,1.84),(1.40,2.04)三个标本三个标本.模糊判别方法模糊判别方法 先将已知蠓重新进行分类先将已知蠓重新进行分类.当当 =0.919时时,分为分为3 3类类 1,2,3,6,4,5,7,8,9,10,11,12,13,14,15,三类的中心向量分别三类的中心向量分别为为(1.39

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁