《注塑机英文翻译.docx》由会员分享,可在线阅读,更多相关《注塑机英文翻译.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、机械类论文下载Failure Analysis,Dimensional Determination And Analysis,Applications Of Cams(故障的分析、尺寸的决定以及凸轮的分析和应用)中英文对照 作者:不详 来源于:机械论文文档在线免费下载网 发布时间:2009-1-2 19:59:56Failure Analysis,Dimensional Determination And Analysis,Applications Of CamsINTRODUCTIONIt is absolutely essential that a design engineer know
2、 how and why parts fail so that reliable machines that require minimum maintenance can be designedSometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speedOn the other hand,a failure may be no more than a nuisanceAn example is the loosening of the radi
3、ator hose in an automobile cooling systemThe consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and correctedThe type of load a part absorbs is just as significant as the magnitudeGenerally speaking,dynamic loads with direction revers
4、als cause greater difficulty than static loads,and therefore,fatigue strength must be consideredAnother concern is whether the material is ductile or brittleFor example,brittle materials are considered to be unacceptable where fatigue is involvedMany people mistakingly interpret the word failure to
5、mean the actual breakage of a partHowever,a design engineer must consider a broader understanding of what appreciable deformation occursA ductile material,however will deform a large amount prior to ruptureExcessive deformation,without fracture,may cause a machine to fail because the deformed part i
6、nterferes with a moving second partTherefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required functionSometimes failure may be due to abnormal friction or vibration between two mating partsFailure also may be due to a phenomenon called creep,which is the
7、plastic flow of a material under load at elevated temperaturesIn addition,the actual shape of a part may be responsible for failureFor example,stress concentrations due to sudden changes in contour must be taken into accountEvaluation of stress considerations is especially important when there are d
8、ynamic loads with direction reversals and the material is not very ductileIn general,the design engineer must consider all possible modes of failure,which include the followingStressDeformationWearCorrosionVibrationEnvironmental damageLoosening of fastening devicesThe part sizes and shapes selected
9、also must take into account many dimensional factors that produce external load effects,such as geometric discontinuities,residual stresses due to forming of desired contours,and the application of interference fit jointsCams are among the most versatile mechanisms availableA cam is a simple two-mem
10、ber deviceThe input member is the cam itself,while the output member is called the followerThrough the use of cams,a simple input motion can be modified into almost any conceivable output motion that is desiredSome of the common applications of cams areCamshaft and distributor shaft of automotive en
11、gine Production machine toolsAutomatic record playersPrinting machinesAutomatic washing machinesAutomatic dishwashersThe contour of high-speed cams (cam speed in excess of 1000 rpm) must be determined mathematicallyHowever,the vast majority of cams operate at low speeds(less than 500 rpm) or medium-
12、speed cams can be determined graphically using a large-scale layoutIn general,the greater the cam speed and output load,the greater must be the precision with which the cam contour is machinedDESIGN PROPERTIES OF MATERIALSThe following design properties of materials are defined as they relate to the
13、 tensile testFigure 2.7Static Strength The strength of a part is the maximum stress that the part can sustain without losing its ability to perform its required functionThus the static strength may be considered to be approximately equal to the proportional limit,since no plastic deformation takes p
14、lace and no damage theoretically is done to the materialStiffness Stiffness is the deformation-resisting property of a materialThe slope of the modulus line and,hence,the modulus of elasticity are measures of the stiffness of a materialResilience Resilience is the property of a material that permits
15、 it to absorb energy without permanent deformationThe amount of energy absorbed is represented by the area underneath the stress-strain diagram within the elastic regionToughness Resilience and toughness are similar propertiesHowever,toughness is the ability to absorb energy without ruptureThus toug
16、hness is represented by the total area underneath the stress-strain diagram, as depicted in Figure 28bObviously,the toughness and resilience of brittle materials are very low and are approximately equalBrittleness A brittle material is one that ruptures before any appreciable plastic deformation tak
17、es placeBrittle materials are generally considered undesirable for machine components because they are unable to yield locally at locations of high stress because of geometric stress raisers such as shoulders,holes,notches,or keywaysDuctility A ductility material exhibits a large amount of plastic d
18、eformation prior to ruptureDuctility is measured by the percent of area and percent elongation of a part loaded to ruptureA 5%elongation at rupture is considered to be the dividing line between ductile and brittle materialsMalleability Malleability is essentially a measure of the compressive ductili
19、ty of a material and,as such,is an important characteristic of metals that are to be rolled into sheetsFigure 2.8Hardness The hardness of a material is its ability to resist indentation or scratchingGenerally speaking,the harder a material,the more brittle it is and,hence,the less resilientAlso,the
20、ultimate strength of a material is roughly proportional to its hardnessMachinability Machinability is a measure of the relative ease with which a material can be machinedIn general,the harder the material,the more difficult it is to machine COMPRESSION AND SHEAR STATIC STRENGTHIn addition to the ten
21、sile tests,there are other types of static load testing that provide valuable informationCompression Testing Most ductile materials have approximately the same properties in compression as in tensionThe ultimate strength,however,can not be evaluated for compressionAs a ductile specimen flows plastic
22、ally in compression,the material bulges out,but there is no physical rupture as is the case in tensionTherefore,a ductile material fails in compression as a result of deformation,not stressShear Testing Shafts,bolts,rivets,and welds are located in such a way that shear stresses are producedA plot of
23、 the tensile testThe ultimate shearing strength is defined as the stress at which failure occursThe ultimate strength in shear,however,does not equal the ultimate strength in tensionFor example,in the case of steel,the ultimate shear strength is approximately 75% of the ultimate strength in tensionT
24、his difference must be taken into account when shear stresses are encountered in machine componentsDYNAMIC LOADSAn applied force that does not vary in any manner is called a static or steady loadIt is also common practice to consider applied forces that seldom vary to be static loadsThe force that i
25、s gradually applied during a tensile test is therefore a static loadOn the other hand,forces that vary frequently in magnitude and direction are called dynamic loadsDynamic loads can be subdivided to the following three categoriesVarying Load With varying loads,the magnitude changes,but the directio
26、n does notFor example,the load may produce high and low tensile stresses but no compressive stressesReversing Load In this case,both the magnitude and direction changeThese load reversals produce alternately varying tensile and compressive stresses that are commonly referred to as stress reversalsSh
27、ock Load This type of load is due to impactOne example is an elevator dropping on a nest of springs at the bottom of a chuteThe resulting maximum spring force can be many times greater than the weight of the elevator,The same type of shock load occurs in automobile springs when a tire hits a bump or
28、 hole in the roadFATIGUE FAILURE-THE ENDURANCE LIMIT DIAGRAMThe test specimen in Figure 2.10a,after a given number of stress reversals will experience a crack at the outer surface where the stress is greatestThe initial crack starts where the stress exceeds the strength of the grain on which it acts
29、This is usually where there is a small surface defect,such as a material flaw or a tiny scratchAs the number of cycles increases,the initial crack begins to propagate into a continuous series of cracks all around the periphery of the shaftThe conception of the initial crack is itself a stress concen
30、tration that accelerates the crack propagation phenomenonOnce the entire periphery becomes cracked,the cracks start to move toward the center of the shaftFinally,when the remaining solid inner area becomes small enough,the stress exceeds the ultimate strength and the shaft suddenly breaksInspection
31、of the break reveals a very interesting pattern,as shown in Figure 2.13The outer annular area is relatively smooth because mating cracked surfaces had rubbed against each otherHowever,the center portion is rough,indicating a sudden rupture similar to that experienced with the fracture of brittle mat
32、erials This brings out an interesting factWhen actual machine parts fail as a result of static loads,they normally deform appreciably because of the ductility of the materialFigure 2.13Thus many static failures can be avoided by making frequent visual observations and replacing all deformed partsHow
33、ever,fatigue failures give to warningFatigue fail mated that over 90% of broken automobile parts have failed through fatigueThe fatigue strength of a material is its ability to resist the propagation of cracks under stress reversalsEndurance limit is a parameter used to measure the fatigue strength
34、of a materialBy definition,the endurance limit is the stress value below which an infinite number of cycles will not cause failureLet us return our attention to the fatigue testing machine in Figure 2.9The test is run as follows:A small weight is inserted and the motor is turned onAt failure of the
35、test specimen,the counter registers the number of cycles N,and the corresponding maximum bending stress is calculated from Equation 2.5The broken specimen is then replaced by an identical one,and an additional weight is inserted to increase the loadA new value of stress is calculated,and the procedu
36、re is repeated until failure requires only one complete cycleA plot is then made of stress versus number of cycles to failureFigure 2.14a shows the plot,which is called the endurance limit or S-N curveSince it would take forever to achieve an infinite number of cycles,1 million cycles is used as a r
37、eferenceHence the endurance limit can be found from Figure 2.14a by noting that it is the stress level below which the material can sustain 1 million cycles without failureThe relationship depicted in Figure 2.14 is typical for steel,because the curve becomes horizontal as N approaches a very large
38、numberThus the endurance limit equals the stress level where the curve approaches a horizontal tangentOwing to the large number of cycles involved,N is usually plotted on a logarithmic scale,as shown in Figure 2.14bWhen this is done,the endurance limit value can be readily detected by the horizontal
39、 straight lineFor steel,the endurance limit equals approximately 50% of the ultimate strengthHowever,if the surface finish is not of polished equality,the value of the endurance limit will be lowerFor example,for steel parts with a machined surface finish of 63 microinches ( in),the percentage drops
40、 to about 40%For rough surfaces (300inor greater),the percentage may be as low as 25% The most common type of fatigue is that due to bendingThe next most frequent is torsion failure,whereas fatigue due to axial loads occurs very seldomSpring materials are usually tested by applying variable shear st
41、resses that alternate from zero to a maximum value,simulating the actual stress patternsIn the case of some nonferrous metals,the fatigue curve does not level off as the number of cycles becomes very largeThis continuing toward zero stress means that a large number of stress reversals will cause fai
42、lure regardless of how small the value of stress isSuch a material is said to have no endurance limitFor most nonferrous metals having an endurance limit,the value is about 25% of the ultimate strengthEFFECTS OF TEMPERATURE ON YIELD STRENGTH AND MODULUS OF ELASTICITYGenerally speaking,when stating t
43、hat a material possesses specified values of properties such as modulus of elasticity and yield strength,it is implied that these values exist at room temperatureAt low or elevated temperatures,the properties of materials may be drastically differentFor example,many metals are more brittle at low te
44、mperaturesIn addition,the modulus of elasticity and yield strength deteriorate as the temperature increasesFigure 2.23 shows that the yield strength for mild steel is reduced by about 70% in going from room temperature to 1000oFFigure 2.24 shows the reduction in the modulus of elasticity E for mild
45、steel as the temperature increasesAs can be seen from the graph,a 30% reduction in modulus of elasticity occurs in going from room temperature to 1000oFIn this figure,we also can see that a part loaded below the proportional limit at room temperature can be permanently deformed under the same load a
46、t elevated temperaturesFigure 2.24CREEP: A PLASTIC PHENOMENONTemperature effects bring us to a phenomenon called creep,which is the increasing plastic deformation of a part under constant load as a function of timeCreep also occurs at room temperature,but the process is so slow that it rarely become
47、s significant during the expected life of the temperature is raised to 300oC or more,the increasing plastic deformation can become significant within a relatively short period of timeThe creep strength of a material is its ability to resist creep,and creep strength data can be obtained by conducting
48、 long-time creep tests simulating actual part operating conditionsDuring the test,the plastic strain is monitored for given material at specified temperaturesSince creep is a plastic deformation phenomenon,the dimensions of a part experiencing creep are permanently alteredThus,if a part operates with tight clearances,the design engineer must accurately predict the amount of creep that will occur during the life of the machineOtherwise,problems such binding or interference can occur Creep also can be a problem in the case where bolts are used to clamp tow parts together at ele