数学史简介课件.ppt

上传人:飞****2 文档编号:78967259 上传时间:2023-03-19 格式:PPT 页数:142 大小:5.58MB
返回 下载 相关 举报
数学史简介课件.ppt_第1页
第1页 / 共142页
数学史简介课件.ppt_第2页
第2页 / 共142页
点击查看更多>>
资源描述

《数学史简介课件.ppt》由会员分享,可在线阅读,更多相关《数学史简介课件.ppt(142页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、奇妙数学史1/31/20231老师眼中的数学爸妈眼中的数学2345其实你了解到的数学,仅限于数学知识数学这门学科涵盖的内容是非常丰富的下面一一道来6数学史的分期数学史的分期一、数学的起源与早期发展一、数学的起源与早期发展一、数学的起源与早期发展一、数学的起源与早期发展(公元前公元前公元前公元前6 6 6 6世纪世纪世纪世纪)二、初等数学时期二、初等数学时期二、初等数学时期二、初等数学时期(公元前公元前公元前公元前6 6 6 6世纪世纪世纪世纪-16-16-16-16世纪世纪世纪世纪)三、近代数学时期三、近代数学时期三、近代数学时期三、近代数学时期(17(17(17(17世纪世纪世纪世纪-18-

2、18-18-18世纪世纪世纪世纪)四、现代数学时期四、现代数学时期四、现代数学时期四、现代数学时期(1820(1820(1820(1820年年年年-现在现在现在现在)7第一章:数学的起源与早期发展数学的起源与早期发展史前数学主要是对数的认识这种认识跨越几万年,直到18世纪89 早在原早在原始人时代,始人时代,人们在生产人们在生产活动中慢慢活动中慢慢的就注意到的就注意到1 1只羊和许只羊和许多羊,一头多羊,一头狼和许多狼狼和许多狼的差异的差异。10随着时间的推移慢慢的产生了数的概念随着时间的推移慢慢的产生了数的概念.最早人们利用自己的手指头来记数,最早人们利用自己的手指头来记数,当自己的手指不够

3、用的时候,人们开始当自己的手指不够用的时候,人们开始采用采用“石头记数石头记数”1112 当人们觉得当人们觉得“石头记数石头记数”法比较麻烦,法比较麻烦,容易出错时,他们又想出了容易出错时,他们又想出了“结绳记数结绳记数”法。法。1314 再后来,人们又发明了再后来,人们又发明了“刻痕记数刻痕记数”法。法。15 在经历了数万年的发展后,直到大约在经历了数万年的发展后,直到大约距今五千多年前,才出现了书写记数以距今五千多年前,才出现了书写记数以及相应的记数方法。及相应的记数方法。公元前公元前34003400年左右的古埃及象形数字年左右的古埃及象形数字16公元前公元前24002400年左右的古巴比

4、伦楔形文字年左右的古巴比伦楔形文字17公元前公元前16001600年左右的中国甲骨文数字年左右的中国甲骨文数字18公元前公元前500500年左右的中国筹算数码年左右的中国筹算数码19公元前公元前300300年左右印度婆罗门数字年左右印度婆罗门数字20 公元公元500500年年左右,随着经济、左右,随着经济、文化和佛教的兴文化和佛教的兴起与发展,印度起与发展,印度地区的数学一直地区的数学一直处于领先地位。处于领先地位。1 1101010010021 大约公元大约公元700700年年前后阿拉伯人征服前后阿拉伯人征服了印度北部,他们了印度北部,他们发现被征服的印度发现被征服的印度地区数学比他们先地区

5、数学比他们先进。于是进。于是771771年,年,印度北部的数学家印度北部的数学家被抓到阿拉伯的巴被抓到阿拉伯的巴格达,被迫给当地格达,被迫给当地人传授数学。人传授数学。22 后来阿拉伯人把这些数学符号传到了后来阿拉伯人把这些数学符号传到了很多地方。最开始阿拉伯数字的形状与现很多地方。最开始阿拉伯数字的形状与现代阿拉伯数字并不完全相同,只是比较接代阿拉伯数字并不完全相同,只是比较接近而已,为了使它变成今天的近而已,为了使它变成今天的0 0、1 1、2 2、3 3、4 4、5 5、6 6、7 7、8 8、9.9.的书写形式,又有的书写形式,又有许多数学家做了许多努力。许多数学家做了许多努力。232

6、4进位制:史上曾经有过二进制,五进制,十进制,十二进制,十六进制,二十进制、六十进制。汉字一二三四五六七八九十对十进制的贡献长期运用后留下二进制十进制据推测五进制十进制与人的手指个数有关25现代澳大利亚托列斯峡群岛上一些部落仍用二进制:一=乌拉勃,二=阿柯扎他们把三表为:阿柯扎乌拉勃那么:阿柯扎阿柯扎?阿柯扎阿柯扎乌拉勃?阿柯扎阿柯扎阿柯扎=?26“0”不是印度人或阿拉伯人的发明“0”太重要了,一无所有为零零是自然数据考证“0”首次出现在柬埔寨苏门答腊的碑文上进位制是人类共同财产27我们学过的数被分为两类:有理数和无理数。有理数我们学过的数被分为两类:有理数和无理数。有理数如如2 2,12.3

7、512.35,72.63263263272.632632632,-106.444444-106.444444,等等。等等。在数学上可以证明,无论是整数、有限小数还是无限在数学上可以证明,无论是整数、有限小数还是无限循环小数都可以用一个分数表示(分母允许取循环小数都可以用一个分数表示(分母允许取1 1),即有理数都可以表示成),即有理数都可以表示成 的形式,且可以的形式,且可以使使m,nm,n没有大于没有大于1 1的公约数。无理数不能用此形式来表的公约数。无理数不能用此形式来表示,不是有理数的实数为无理数。示,不是有理数的实数为无理数。28无理数的发现无理数的发现 希腊文明是人类文化史上最光辉的

8、一页。大约在公希腊文明是人类文化史上最光辉的一页。大约在公元前元前12001200年至公元前年至公元前10001000年间,希腊部落爱奥尼亚人迁年间,希腊部落爱奥尼亚人迁徙到包括爱琴海东部诸岛屿在内的小亚细亚西部地方。徙到包括爱琴海东部诸岛屿在内的小亚细亚西部地方。由于海上交通的方便,使得它容易接受巴比伦、埃及由于海上交通的方便,使得它容易接受巴比伦、埃及等古代的先进文化,最终形成了后来影响欧洲乃至整等古代的先进文化,最终形成了后来影响欧洲乃至整个世界的灿烂文化。个世界的灿烂文化。希腊文明最为突出的是其具有高度的理性化与抽象希腊文明最为突出的是其具有高度的理性化与抽象化,在希腊学术传统中,哲学

9、、几何学、艺术和逻辑化,在希腊学术传统中,哲学、几何学、艺术和逻辑学的成就最高。学的成就最高。29 毕达哥拉斯毕达哥拉斯(约前约前560560年年-约前约前480480年年)学派是继以泰勒斯学派是继以泰勒斯为代表的爱奥尼亚学派之后,希腊第二个重要学派,它为代表的爱奥尼亚学派之后,希腊第二个重要学派,它延续了两个世纪,在希腊有很大的影响。它有着带有浓延续了两个世纪,在希腊有很大的影响。它有着带有浓厚宗教色彩的严密组织,属于唯心主义学派。他们相信厚宗教色彩的严密组织,属于唯心主义学派。他们相信依靠数学可使灵魂升华,与上帝融为一体,从而数学是依靠数学可使灵魂升华,与上帝融为一体,从而数学是其教义的一

10、部分。他们在数学上最大的贡献是证明了直其教义的一部分。他们在数学上最大的贡献是证明了直角三角形三边关系的勾股定理,故西方称之为毕达哥拉角三角形三边关系的勾股定理,故西方称之为毕达哥拉斯定理。斯定理。毕达哥拉斯学派的信条是,世界万物都是可以用数毕达哥拉斯学派的信条是,世界万物都是可以用数来表示的。他们所称的数就是自然数和分数。实际上分来表示的。他们所称的数就是自然数和分数。实际上分数也是自然数的结果。他们将这种数的理论应用于几何,数也是自然数的结果。他们将这种数的理论应用于几何,认为,对于任何两条线段,总可找到一条同时量尽它们认为,对于任何两条线段,总可找到一条同时量尽它们的单位线段,并称此两线

11、段为可公度的。这种可公度性的单位线段,并称此两线段为可公度的。这种可公度性等价于等价于“任何两条线段之比为有理数任何两条线段之比为有理数”。他们在几何推。他们在几何推理中总是使用这条可公度性假定。理中总是使用这条可公度性假定。30 公元前公元前4 4世纪,毕达哥拉斯学派的信徒世纪,毕达哥拉斯学派的信徒希帕索斯希帕索斯发现存在某些线段之间是不可公度的,例如正方形发现存在某些线段之间是不可公度的,例如正方形的边长与其对角线之间就是不可公度。根据毕达哥的边长与其对角线之间就是不可公度。根据毕达哥拉斯定理容易发现,它们之比并非是自然数之比。拉斯定理容易发现,它们之比并非是自然数之比。据说,由于希帕索斯

12、的这一发现,触犯了毕达哥拉据说,由于希帕索斯的这一发现,触犯了毕达哥拉斯学派的信条而被视为异端,为此他被其同伴抛进斯学派的信条而被视为异端,为此他被其同伴抛进大海。因为他竟然在宇宙间搞出这样一个东西,否大海。因为他竟然在宇宙间搞出这样一个东西,否定了毕氏学派的信念。他们要把发现的秘密和他们定了毕氏学派的信念。他们要把发现的秘密和他们的困惑一起抛入大海,永不泄露。的困惑一起抛入大海,永不泄露。31 虽然毕达哥拉斯学派发现了无理数,但他们却严禁虽然毕达哥拉斯学派发现了无理数,但他们却严禁泄露这一重要的发现,原因是这一发现彻底摧毁了学泄露这一重要的发现,原因是这一发现彻底摧毁了学派赖以安身立命的根本

13、信念:派赖以安身立命的根本信念:“万物皆数万物皆数”。他们认。他们认为:为:“人们所知道的一切事物都包含数,因此,没有人们所知道的一切事物都包含数,因此,没有数既不可能表达,也不可能理解任何事物数既不可能表达,也不可能理解任何事物”。但要注。但要注意,毕达哥拉斯学派所说的数仅指整数,而分数是被意,毕达哥拉斯学派所说的数仅指整数,而分数是被看作两个整数之比。但是很不幸,是他们自己发现了看作两个整数之比。但是很不幸,是他们自己发现了正方形的对角线与边的长度之比不能用整数或整数之正方形的对角线与边的长度之比不能用整数或整数之比(即现在所说的有理数)表示,也就是找不到一个比(即现在所说的有理数)表示,

14、也就是找不到一个数(指整数或整数之比,即有理数)使它平方后等于数(指整数或整数之比,即有理数)使它平方后等于2 2,这就动摇了他们,这就动摇了他们“万物皆数万物皆数”的根本信念。他们的根本信念。他们无法解释到底世界发生了什么事情,学派内部引起了无法解释到底世界发生了什么事情,学派内部引起了极大的思想混乱。极大的思想混乱。32 然而真理是不会被淹没的。人们很快发现不可公然而真理是不会被淹没的。人们很快发现不可公度并非罕见:面积等于度并非罕见:面积等于3 3,5 5,6 6,1717的正方形的的正方形的边与单位正方形的边也不可公度。边与单位正方形的边也不可公度。新的问题促使人们重新认识曾经被看成是

15、完美无缺的新的问题促使人们重新认识曾经被看成是完美无缺的有理数论,数学发展出现了有理数论,数学发展出现了“第一次危机第一次危机”,这次危,这次危机使毕达哥拉斯学派迅速瓦解。它对古希腊的数学观机使毕达哥拉斯学派迅速瓦解。它对古希腊的数学观点有着极大的冲击,整数的尊崇地位受到挑战。于是点有着极大的冲击,整数的尊崇地位受到挑战。于是几何开始在希腊数学中占有特殊地位,同时,人们开几何开始在希腊数学中占有特殊地位,同时,人们开始不得不怀疑直觉和经验的可靠性,从此希腊几何开始不得不怀疑直觉和经验的可靠性,从此希腊几何开始走向公理化的演绎形式。始走向公理化的演绎形式。随着对于数的认识的发展,无理数终于在人们

16、心目随着对于数的认识的发展,无理数终于在人们心目中取得合法地位,并逐渐发展了实数的严格理论。关中取得合法地位,并逐渐发展了实数的严格理论。关于实数理论现在已广泛应用于科学技术和日常生活之于实数理论现在已广泛应用于科学技术和日常生活之中。中。33中国传统数学中的无理数产生于开方不尽和圆中国传统数学中的无理数产生于开方不尽和圆周率的计算。不过由于中国古算与古希腊数学有周率的计算。不过由于中国古算与古希腊数学有着不同的传统,希腊人总是将数与形截然分开,着不同的传统,希腊人总是将数与形截然分开,对涉及无限的问题总是持有恐惧的态度。中国算对涉及无限的问题总是持有恐惧的态度。中国算学中数与形是有机统一的,

17、中国人自始至终对关学中数与形是有机统一的,中国人自始至终对关于无限的问题总是泰然处之,能够正视无理数。于无限的问题总是泰然处之,能够正视无理数。34奇妙的自然数奇妙的自然数 1,2,3,4,5,1,2,3,4,5,这些简简单单的自然数,是这些简简单单的自然数,是我们从呀呀学语开始就认识的。它们是那样自我们从呀呀学语开始就认识的。它们是那样自自然然,因而显得平淡无奇。但我们如果认真自然然,因而显得平淡无奇。但我们如果认真研究一下这些数字,就会发现其中妙趣横生。研究一下这些数字,就会发现其中妙趣横生。聪明的数学王子高斯在小学的时候就会巧算自聪明的数学王子高斯在小学的时候就会巧算自然数列之和,这正是

18、由于他对自然数有深刻的然数列之和,这正是由于他对自然数有深刻的了解。高斯小时候在德国的一所农村小学读书。了解。高斯小时候在德国的一所农村小学读书。数学老师是位从城里来的先生。他瞧不起穷人数学老师是位从城里来的先生。他瞧不起穷人的孩子,从不认真教他们,甚至还打骂学生。的孩子,从不认真教他们,甚至还打骂学生。有一天,他情绪很坏,一上课就命令学生做加有一天,他情绪很坏,一上课就命令学生做加法,从法,从1 1一直加到一直加到100100,谁算不到就不准回家。,谁算不到就不准回家。35所有的孩子都急急忙忙地算起来,老师却在一边看小所有的孩子都急急忙忙地算起来,老师却在一边看小说,不一会儿,小高斯就算出了

19、结果是说,不一会儿,小高斯就算出了结果是50505050。老师大。老师大吃一惊,奇怪他怎么算得这么快。原来,高斯并不是吃一惊,奇怪他怎么算得这么快。原来,高斯并不是按按1+2+3+41+2+3+4 的顺序计算的。而是把的顺序计算的。而是把1 1到到100100一串数,一串数,从两头向中间,一头一尾两两相加,每两个数的和都从两头向中间,一头一尾两两相加,每两个数的和都是是101101。例如:。例如:1+1001+100、2+992+99、3+983+98 ,直到,直到50+5150+51,和都是,和都是101101。这样,。这样,100100个数正好是个数正好是5050对,因此,对,因此,101

20、101 50 50就得出就得出50505050的总和了。从此,老师再也不敢轻的总和了。从此,老师再也不敢轻视穷孩子们了。他还从城里买来书,送给高斯,热心视穷孩子们了。他还从城里买来书,送给高斯,热心帮助他学数学,高斯进步得更快了。小高斯所用的方帮助他学数学,高斯进步得更快了。小高斯所用的方法,正是许多数学家经过长期努力才找到的等差数列法,正是许多数学家经过长期努力才找到的等差数列求和的办法。求和的办法。36这个故事人人皆知,它说明努力发现和巧妙利用规律这个故事人人皆知,它说明努力发现和巧妙利用规律是多么重要。现在让我们再看看自然数还有哪些有趣是多么重要。现在让我们再看看自然数还有哪些有趣的性质

21、。的性质。自然数中有一类数被称为自然数中有一类数被称为“自守数自守数”。所谓自守数就。所谓自守数就是自已和自己相乘以后得到的数,尾数不变。在自然是自已和自己相乘以后得到的数,尾数不变。在自然数中凡末尾数是数中凡末尾数是1 1、5 5和和6 6的数,不论自乘多少次,尾数的数,不论自乘多少次,尾数仍然是仍然是1 1、5 5、6 6。例如:例如:212121=421 21=421 2121212121=926121=9261325325325=105625325=1056256 66 66 66=12966=1296 这样的结论是不是完全正确呢?我们可以用代数方法这样的结论是不是完全正确呢?我们可以

22、用代数方法加以证明。加以证明。37让我们以末尾是让我们以末尾是6 6的数为例。这样的数可以表成的数为例。这样的数可以表成10a+6 10a+6,这里,这里a a为任意自然数,那么:为任意自然数,那么:由于由于a a是自然数,得到的结果也必定是自然数,可见它是自然数,得到的结果也必定是自然数,可见它的个位必定是的个位必定是6 6。高次方情况下也如此,证明从略。用。高次方情况下也如此,证明从略。用同样方法可以证明同样方法可以证明1 1、5 5结尾的数也是自守数。结尾的数也是自守数。38如果把尾数取到两位,还有没有自守的性质呢?如果把尾数取到两位,还有没有自守的性质呢?有。比如末尾是有。比如末尾是2

23、525和和7676的数就是自守数。的数就是自守数。如果尾数取到三位、四位或更高位数,还能找到自守如果尾数取到三位、四位或更高位数,还能找到自守数吗?经过数学家的计算寻觅,发现尾数为数吗?经过数学家的计算寻觅,发现尾数为376376、93769376、0937609376、109376109376、71093767109376以及末尾是以及末尾是625625、06250625、9062590625、890625890625、28906252890625、的数都是自守数。的数都是自守数。39让我们再来看看自然数中的奇数和偶数。让我们再来看看自然数中的奇数和偶数。奇数数列是奇数数列是1,3,5,7,

24、1,3,5,7,n,n,(n n为项数)偶数数列是为项数)偶数数列是2,4,6,8,2,4,6,8,2n,2n,(n n为项数)人们研究奇数,发现如为项数)人们研究奇数,发现如下的性质:下的性质:40自然数中偶数数列则有如下的性质:自然数中偶数数列则有如下的性质:2=12=12 2 2+4=6=22+4=6=23 3 2+4+6=12=32+4+6=12=34 4 2+4+6+8=20=42+4+6+8=20=45 5 2+4+6+8+2+4+6+8+2n=n+2n=n(n+1n+1)用数学归纳法能证明这个结论。用数学归纳法能证明这个结论。41此外,对所有的自然数,下面的规律也成立并且此外,对

25、所有的自然数,下面的规律也成立并且十分有趣:十分有趣:42自然数中还有一类数被称为回文数。回文数就是一个数的两边对自然数中还有一类数被称为回文数。回文数就是一个数的两边对称,如称,如1111,121121,12211221,93399339,3020330203等等。回文数本身倒也没有什等等。回文数本身倒也没有什么奇特。不过人们发现大多数的自然数,如果把它各位数字的顺么奇特。不过人们发现大多数的自然数,如果把它各位数字的顺序倒置,再与原数相加,将得数再按上述步骤进行,经过有限的序倒置,再与原数相加,将得数再按上述步骤进行,经过有限的步骤后必能得到一个回文数:步骤后必能得到一个回文数:如:如:9

26、5+59=154 95+59=154 又如:又如:198+891=1089 198+891=1089 154+451=605 1089+9801=10890 154+451=605 1089+9801=10890 605+506=1111 10890+09801=20691 605+506=1111 10890+09801=20691 1111 1111就是一个回文数。就是一个回文数。20691+19602=40293 20691+19602=40293 40293+39204=79497 40293+39204=79497 79497 79497又是一个回文数。又是一个回文数。是不是所有的自

27、然数都有这个性质呢?不是。例如三位数中的是不是所有的自然数都有这个性质呢?不是。例如三位数中的196196似乎用上述办法就得不到回文数。有人用计算机对似乎用上述办法就得不到回文数。有人用计算机对196196用上述用上述办法重复十万次,仍然没有得到回文数。但至今还没有人能用数办法重复十万次,仍然没有得到回文数。但至今还没有人能用数学证明办法对这个问题下结论,所有学证明办法对这个问题下结论,所有196196问题问题 也成了世界性数学也成了世界性数学难题之一。经过计算,在前十万个自然数中有难题之一。经过计算,在前十万个自然数中有59965996个数就像个数就像196196一一样很难得到回文数。样很难

28、得到回文数。43最后再让我们看两组有趣的数:最后再让我们看两组有趣的数:第一组为:第一组为:1,6,7,23,24,30,38,47,54,55 1,6,7,23,24,30,38,47,54,55 第二组为:第二组为:2,3,10,19,27,33,34,50,51,56 2,3,10,19,27,33,34,50,51,56 这两组数有什么奇特之处呢?这两组数有什么奇特之处呢?首先,这两组数都没有公因数,而且两组数各自的和都是首先,这两组数都没有公因数,而且两组数各自的和都是285285。不过这算不上奇怪,拼拼凑凑,谁也弄得出来。不要着急,我不过这算不上奇怪,拼拼凑凑,谁也弄得出来。不要着

29、急,我们再往下看。如果计算一下它们的方幂之和,你就会大为惊奇。们再往下看。如果计算一下它们的方幂之和,你就会大为惊奇。44 因为数字太多,我们不能一一列下去,让我们把结果列出来因为数字太多,我们不能一一列下去,让我们把结果列出来方幂次数方幂次数 每组数方幂和每组数方幂和 0 0 10 10 1 285 1 285 2 11685 2 11685 3 536085 3 536085 4 26043813 4 26043813 5 1309753125 5 1309753125 6 6734006805 6 6734006805 7 3512261547765 7 3512261547765 8

30、185039471773893 8 185039471773893 从从0 0次幂到次幂到8 8次幂,两组数的方幂和都相等,谁能不感到惊奇呢?次幂,两组数的方幂和都相等,谁能不感到惊奇呢?不过算到不过算到9 9次方幂,两组数的方幂和就不相等了,这又是为什么次方幂,两组数的方幂和就不相等了,这又是为什么呢?这两组有趣的数和它们有趣的性质吸引了不少人进行研究。呢?这两组有趣的数和它们有趣的性质吸引了不少人进行研究。专门研究整数性质的数学分支叫作数论。数论中有许多看似简专门研究整数性质的数学分支叫作数论。数论中有许多看似简单实则相当困难,甚至近乎神秘的问题等待人们去解决。单实则相当困难,甚至近乎神秘

31、的问题等待人们去解决。45轻松课堂轻松课堂数字游戏问题数字游戏问题数字游戏问题是数学游戏数字游戏问题是数学游戏中的一类,他要求从数字以及数中的一类,他要求从数字以及数字间的运算中发现规律,然后按字间的运算中发现规律,然后按照这个规律去填数或填写运算符照这个规律去填数或填写运算符号,解决这一类问题的关键是寻号,解决这一类问题的关键是寻找规律、发现规律找规律、发现规律1/31/202346在在在在 里填上适当的数里填上适当的数里填上适当的数里填上适当的数答案:答案:答案:答案:1 9 2 8 3 1 9 2 8 3 1 9 2 8 3 1 9 2 8 3 7 4 6 7 4 6 7 4 6 7 4

32、 6 分析:题中共有八个数,前分析:题中共有八个数,前7 7个已经个已经知道最后一个需要填写。知道最后一个需要填写。8 8个数中个数中1+9=10,2+8=10,3+7=101+9=10,2+8=10,3+7=10,所以最后,所以最后两个数是两个数是4+=10.4+=10.这样,这样,里应该填里应该填6 61 9 2 8 3 7 4 1 9 2 8 3 7 4 47 在在 中填入适当的数中填入适当的数 15 14 12 11 9 8 15 14 12 11 9 8 答案:题中的数按照从大到小的规律答案:题中的数按照从大到小的规律排列的,每个数为一组,每两组之间排列的,每个数为一组,每两组之间又

33、去掉一个相邻的数:又去掉一个相邻的数:1515、1414、1313、1212、1111、1010、9 9、8 8、7 7、6 6、5 5所以所以 应应填填6 6、5 5这道题还可以这样分析:这道题还可以这样分析:15-1=1415-1=14、14-2=1214-2=12、12-12-1=111=11、11-2=911-2=9、9-1=89-1=8、8-2=68-2=6、6-1=56-1=548 在(在()里填数)里填数 2 2、0 0、2 2、2 2、4 4、6 6、1010、(、()答案:观察发现答案:观察发现2+0=22+0=2、0+2=20+2=2、2+2=42+2=4、2+4=62+4

34、=6、4+6=10.4+6=10.即前即前两个数相加的和是后面的数,两个数相加的和是后面的数,这样最后一个数应是这样最后一个数应是6+10=166+10=16,(,()里应填)里应填1616 49 在空格中填入合适的数。在空格中填入合适的数。答案:表格中的数分上下两排,答案:表格中的数分上下两排,每一排的数各有自己的规律,每一排的数各有自己的规律,上排的数是从上排的数是从4 4开始依次加开始依次加2 2、3 3、4 4得到得到,下排的数是从下排的数是从5 5开始依次开始依次加加4 4、6 6、8 8得到得到 4569132391550 在空格里填入合适的数在空格里填入合适的数答案:数字分成三组

35、,前二组中的三答案:数字分成三组,前二组中的三个数字的和是个数字的和是20,7+12+1=2020,7+12+1=20,8+9+3=208+9+3=20,所以第三组应是(,所以第三组应是()+2+5=20+2+5=20,空格中的数字是,空格中的数字是1313 12 193852751 在空格中填入合适的数在空格中填入合适的数在空格中填入合适的数在空格中填入合适的数分析分析分析分析1 1 1 1:九个数分成三组,:九个数分成三组,:九个数分成三组,:九个数分成三组,第一组中有第一组中有第一组中有第一组中有8+18=28+18=28+18=28+18=213131313,即第一个数与第三个数的即第

36、一个数与第三个数的即第一个数与第三个数的即第一个数与第三个数的和是中间那个数的二倍,和是中间那个数的二倍,和是中间那个数的二倍,和是中间那个数的二倍,同样第三组中同样第三组中同样第三组中同样第三组中16+30=216+30=216+30=216+30=223232323,所以中间一组,所以中间一组,所以中间一组,所以中间一组2 2 2 2()=12+24=12+24=12+24=12+24813181623301224分析:将这九个数横的作一排,第一排中有8+4=12,12+4=16.即面的数比前面的数大4.第三排中有18+16=24,24+6=30,后面的数比前面的数大6.再看第二排应是13

37、+5=18,18+5=23,所以空格中应填1852在空格处填入合适的数在空格处填入合适的数 答案:每个图中都有三个圈,每个圈中填有数字。这三个数字之间有某种关系分析第一个图发现6-5=1.12=2,分析第二个图同样有7-4=3,32=6,所以第三个图应该是8-3=5,52=10,第三个空白处应填10。53四大文明古国:中国公元前二十七世纪黄帝时代就开始了数学研究数学发达至少有4000年成就:分数、正负数、勾股定理、圆周率、剩余定理、杨辉三角等等由于中国文字的限制,数学理论的表叙以及推导都极为困难,导致数学理论在中国发展受到制约中国长期重文轻理导致数学以及科学的落后政治原因,农业大国54四大文明

38、古国:印度印度有印度有35003500至至40004000年年最大成就是印度数码,十进制最大成就是印度数码,十进制五世纪后五世纪后“零零”的符号在印度出现的符号在印度出现与占星术,宗教,农业关系密切与占星术,宗教,农业关系密切方法与结果用树皮树叶记载,大多失散方法与结果用树皮树叶记载,大多失散用晦涩的诗歌表述,难于理解用晦涩的诗歌表述,难于理解知道勾股定理,三角学并计算出知道勾股定理,三角学并计算出55四大文明古国:埃及光辉灿烂的文明影响较大的:金字塔,纸草书,古文字尼罗河贯穿全景治理尼罗河河水泛滥,他们研究天文发现:河水上涨与清晨天狼星升起的日子一样,间隔365天,确立现代公历的基础重新测定

39、河岸的土地,几何特别发达没有上升为理论,直到公元前4世纪后,希腊人入侵为止56四大文明古国:巴比伦数学泥板的发现上面有:帐单,收据,票据,大量数学用表,达到古代数学的最高的理论水平1847年开始解读数学泥板,1920年才有详尽的注解,巴比伦文明被世人了解60位进制,面积体积的计算,方程组的求解,级数求和,勾股数,二次方程57四大文明古国与河流中国:黄河,长江埃及:尼罗河巴比伦:底格里斯河,幼发拉底河印度:恒河,印度河58其他发达古国希腊从公元前希腊从公元前6 6世纪至公元世纪至公元4 4世纪,达世纪,达10001000年年阿拉伯数学发达仅限于阿拉伯数学发达仅限于8 8至至1313世纪,有世纪,

40、有500500年年欧洲国家数学发达是在欧洲国家数学发达是在1010世纪以后的事世纪以后的事日本则迟至日本则迟至1717世纪以后。世纪以后。59无理数的出现与第一次数学危机无理数就像岔路口的路标,沿不同方向均可发现它的存在。中国沿一个方向来到它的面前竟然视而不见古希腊沿另外一个方向来到它的面前却有意躲避60中国与无理数九章算术第四章说“若开之不尽者,为不可开,当以面命之”我们不知“当以面命之”所云为何,但可以确定,那时中国人一来到这个路标下了。刘徽在计算平方根的近似值时离无限不循环已近在咫尺,但他说“不足言之”竟然放弃了。“重算法轻算理”是中国古代的风气使中国与无理数失之交臂,令人惋惜。61古希

41、腊与无理数学派众多,最有名的是毕达哥拉斯学派(元前580元前500)柏拉图学派(元前430元前349)毕达哥拉斯学派是兼有政治,宗教,哲学的团体,“万物皆数”(读三声)为其哲学基础和理论出发点。毕氏提出了著名的毕达哥拉斯定理。62伟大的毕达哥拉斯毕达哥拉斯:古希腊数学家,公元前580至公元前497,青年的他游历许多地方,并到埃及印度留学。他深入民间收集点点滴滴的数学知识,最后学有所成并形成一个学派,史称毕达哥拉斯学派,对数学,天文学有巨大贡献。毕达哥拉斯学派认为任何数都可以表达成二个整数的商,即任意数都是可以度量的。63万物皆数他们把线段的长度看作是线段锁包含的原子数目,因而任意两条线段长度之

42、比就是它们各自原子数之比。由此观点出发,毕氏研究了音乐美术天文地理。应用在数学上,从埃及的黄金三角形(各边之比为3:4:5)发现5:12:13,8:15:17,这就是中国说的“勾股定理”它们只相信直角三角形的三边之比都应该是整数比64毕氏的学生、学者希帕索斯发现直角三角形直角边都取1,则斜边就不可度量,与毕氏理论产生矛盾毕氏也发现不可通约量的存在学派进入两难境地,学派内部所有成员立誓保密,因而无理数有个诨号“不可说”(Alogon)希帕索斯说了,学派就此开始瓦解。学派解决矛盾的方法是把希帕索斯抛进大海。希帕索斯的发现引发了第一次数学危机。大约公元前世纪,不可通约量的发现 毕达哥拉斯悖论 65无

43、理数:古代数学家前进的方向欧道克斯(希腊,元前408前355)数与量的分离:连续与离散。存在与否困扰科学家哲学家在迷雾中度过漫长而黑暗的中世纪,迎来“文艺复兴”的繁荣时期(公元14001600)无理数终于被人们慢慢接受疑惑仍然存在“即乐意又心存疑虑”直到19世纪实数理论的建立才完全消除66谁推开了虚数的“大门”12世纪,印度数学家婆什伽罗说:“正数的平方是正数,负数的平方是正数,因此一个正数的平方根是两个,一个正数,一个负数。负数没有平方根”。他太肯定了!“负数没有平方根”遏制了后人的探索欲望。400年来,数学家都采取了回避态度。1545年卡丹的 让人莫名其妙(后面专门谈他)67大师的困惑与无

44、知卡丹(意大利数学家,医生,算命先生15011576)到达大门,不敢敲门。欧拉彻底否认:他说“一切形如 的数学式都是不可能有的,这类数 纯属虚构”伟大的笛卡儿(法国数学家,15961650)创立直角坐标系,给出理论武器。200年后即18世纪,挪威的测绘员威赛尔,巴黎的会计师阿尔干完美解释。68从一维到二维600年的艰辛众多杰出数学家束手无策,历史罕见思维定势所限:现实中没有,传统数学中它不合理条件所限:不能从一维跳到二维,笛卡儿还未出生,平面坐标不知为何物,费尔玛无人认识,点的坐标,有序对是天方夜谈,解析几何还在数学的摇篮中睡觉69第二章:几何学代数学的发展先有几何还是先有代数?一个领域的繁荣

45、昌盛不外乎下列几个原因:1有重大理论问题出现。2有现实问题急需解决。3出现伟大人物。代数与几何都有非常辉煌的时光。代数必讲数论及方程,几何必讲欧几里德德原本。几何狂飚:突破欧几里德几何,非欧几何。70数论与方程:第二次抽象数的崇拜与禁忌:“1生2,2生3,3生万物”所以1最神圣,7,8为吉祥数。4,13为一些民族的禁忌中国人崇拜“9”:故宫大门纵横九颗铜星,皇帝九龙袍,九龙壁,“九九归一,侄极而返”“60”是古巴比伦人与毕达哥拉斯心中的神数的文化:奇为女,偶为男,“一帆风顺,双喜临门,三阳开泰,四通八达,五彩缤纷,六根清洁,八面玲珑,九霄云外,十全十美”“一波三折,两败俱伤,三长两短,四面楚歌

46、,五内俱焚,六神无主,七上八下,九死一生,十恶不赦”71数论与方程:第二次抽象整除理论:最古老的问题,中国剩余定理地道的业余数学家费尔玛:从地方官员到数学家,30岁学习数学,既是解析几何的发明者(与笛卡儿同享)又是概率论的开创者(与帕斯卡同享),不同寻常的经历,不可思议,令人感慨万千费马玛(法国数学家,1601-1665)与数论:看起来简单,作起来难之又难,是数论的魅力所在,使人“衣带渐宽终不悔,为伊消得人憔悴”,始作俑者费尔玛。现代数论的先驱创始人72费尔玛猜想丢番图(古希腊公元246330)名著算术,代数学之母算术是费尔玛的枕边之物从17世纪到20世纪,历时300多年,直到1994,41岁

47、得英国数学家怀尔斯解决73高斯(德国数学家,17771855)与数论现代数论统一理论的创建者20岁决定献身数学,最终成为最伟大的数学家之一1801年结束费尔玛数论,开创纯理论数论研究追随者:戴德金,狄利克雷,刘维尔,闵可夫斯基,创建:代数数论,解析数论,超越数论,几何数论74哥德巴赫猜想与陈景润1742年,德国哥德巴赫老师发现“大于2的偶数,可以表示为两个素数之和”求教欧拉:欧拉说“虽然我不能证明它,但我确信它完全正确”1900年希尔伯特(德国数学家,18621943)把它列为23个世纪难题,称为“皇冠上的明珠”1966年中国人陈景润(19331996)证明“12”,1973年发表,离摘取明珠

48、咫尺之遥陈氏定理被誉为“光辉顶点”75方程的历史方程的产生:在中国,在日本,在印度花拉子模(阿拉伯人,公元780850)第一次给出未知量,但他称其为“硬币”“东西”“根”代数“Algebra”源于花氏的书中“还原”一词古希腊的不定方程,丢番图,费尔玛与不定方程印度的不定方程,追求全部整数解,他们的 阿耶波多,婆罗摩岌多,婆什伽罗都有著述76方程的发展符号化:从丢番图开始到1589年的韦达从一元到二元:古希腊数学家海伦的著作,中国九章算术均有记述海伦:有一正方形知其面积与周长之和为896尺,求其一边九章算术:今有邑城方不知大小,各开中门。出北门20步有木,出南门14步折而西行1775见木。问邑方

49、几何?77符号化的形式78一元二次方程的解法花拉子模的几何解法中国的“开带从平方法”古希腊的配方法:公元100年海伦200年丢番图完成佛兰西斯韦达(法国数学家,法学家,外交家,国王参谋长,15401603):根与系数的关系79一元三次方程的公式解人们寻找象一元二次方程那样的公式解当时认为它比圆化方还难16世纪,意大利的波罗拉学派的弗罗(14651562)得出 的解。但是未公布30岁的尼科拉方丹纳(意大利布雷西亚青年,15001557)绰号“塔塔利亚”(结巴):给出一元三次方程的公式解80数学史上第一次数学竞赛塔塔利亚解决的问题:他未公布答案,引来波罗拉学派的愤怒塔塔利亚与波罗拉决定举行竞赛,塔

50、塔利亚胜出,这是有史记载的第一次数学竞赛81塔塔利亚,卡丹,费拉里的恩恩怨怨卡丹:(雄辩家,博物学家,几何家,代数家,天文学家,星象学家,医学家,外科专家,道学家,语言学家)拜倒在塔塔利亚面前1539年求教与塔氏,并同意保密,得到手稿卡丹的仆人费拉里的成就:一元四次方程的解法1545年卡丹发表大衍术(Ars Magna)公开塔氏费氏成果,引发数学史的第一次公案事情远未结束:五次以及五次以上的方程呢?82初等几何起源:无意识的几何阶段,埃及金字塔(元前2900),尼罗河岸边的土地界限丈量几何的发展:经验几何的产生,中国埃及巴比伦印度论证几何的哲学基础的出现:公理及严谨的逻辑推理,古希腊哲学的发展

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁