《2022高考数学真题分类汇编01集合与常用逻辑用语.docx》由会员分享,可在线阅读,更多相关《2022高考数学真题分类汇编01集合与常用逻辑用语.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022高考数学真题分类汇编一、集合一、单选题1.(2022全国甲(理) 设全集,集合,则( )A. B. C. D. 【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,所以,所以.故选:D.2.(2022全国甲(文) 设集合,则( )A. B. C. D. 【答案】A【解析】【分析】根据集合的交集运算即可解出【详解】因为,所以故选:A.3.(2022全国乙(文) 集合,则( )A. B. C. D. 【答案】A【解析】【分析】根据集合的交集运算即可解出【详解】因为,所以故选:A.4.(2022全国乙(理) 设全集,集合M满足,则( )A. B. C. D.
2、【答案】A【解析】【分析】先写出集合,然后逐项验证即可【详解】由题知,对比选项知,正确,错误故选:5.(2022新高考卷)若集合,则( )A. B. C. D. 【答案】D【解析】【分析】求出集合后可求.详解】,故,故选:D6.(2022新高考卷) 已知集合,则( )A. B. C. D. 【答案】B【解析】【分析】求出集合后可求.【详解】,故,故选:B.7.(2022北京卷T1) 已知全集,集合,则( )A. B. C. D. 【答案】D【解析】【分析】利用补集的定义可得正确的选项【详解】由补集定义可知:或,即,故选:D8.(2022浙江卷T1) 设集合,则( )A. B. C. D. 【答
3、案】D【解析】【分析】利用并集的定义可得正确的选项.详解】,故选:D.二、常用逻辑用语1.(2022北京卷T6) 设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】设等差数列的公差为,则,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【详解】设等差数列的公差为,则,记为不超过的最大整数.若为单调递增数列,则,若,则当时,;若,则,由可得,取,则当时,所以,“是递增数列”“存在正整数,当时,”;若存在正整数,当时,取且,假设,令可得,且,当时,与题设矛盾,假设不成立,则,即数列是递增数列.所以,“是递增数列”“存在正整数,当时,”.所以,“是递增数列”是“存在正整数,当时,”的充分必要条件.故选:C.2.(2022浙江卷T4) 设,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为可得:当时,充分性成立;当时,必要性不成立;所以当,是的充分不必要条件.故选:A.