【2022高中数学精品教案】6.4.3 余弦定理、正弦定理(第3课时)余弦定理、正弦定理应用举例(2).docx

上传人:yanj****uan 文档编号:78915261 上传时间:2023-03-19 格式:DOCX 页数:10 大小:241.25KB
返回 下载 相关 举报
【2022高中数学精品教案】6.4.3 余弦定理、正弦定理(第3课时)余弦定理、正弦定理应用举例(2).docx_第1页
第1页 / 共10页
【2022高中数学精品教案】6.4.3 余弦定理、正弦定理(第3课时)余弦定理、正弦定理应用举例(2).docx_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《【2022高中数学精品教案】6.4.3 余弦定理、正弦定理(第3课时)余弦定理、正弦定理应用举例(2).docx》由会员分享,可在线阅读,更多相关《【2022高中数学精品教案】6.4.3 余弦定理、正弦定理(第3课时)余弦定理、正弦定理应用举例(2).docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【新教材】6.4.3 余弦定理、正弦定理 教学设计(人教A版) 第3课时 余弦定理、正弦定理应用举例三角形中的几何计算问题主要包括长度、角、面积等,常用的方法就是构造三角形,把所求的问题转化到三角形中,然后选择正弦定理、余弦定理加以解决,有的问题与三角函数联系比较密切,要熟练运用有关三角函数公式.课程目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语;2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.数学学科素养1.数学抽象:方位角、方向角等概念;2.逻辑推理:分清已知条件

2、与所求,逐步求解问题的答案;3.数学运算:解三角形;4.数学建模:数形结合,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解;难点:根据题意建立数学模型,画出示意图.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,但是没有足够的空间,不能用全等三角形的方法来测量,所以,有

3、些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。那么运用正弦定理、余弦定理能否解决这些问题?又怎么解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本48-51页,思考并完成以下问题1、方向角和方位角各是什么样的角?2、怎样测量物体的高度?3、怎样测量物体所在的角度?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。三、新知探究1、实际测量中的有关名称、术语名称定义图示基线在测量中,根据测量需要适当确定的线段叫做基线仰角在同一铅垂平面内,视线在水平线 上 方时与水平线的夹角俯角在同一铅垂平面内,视线在水平线下方

4、时与水平线的夹角方向角从指定方向线到 目标方向线 的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90)方位角从正北的方向线按 顺 时针到目标方向线所转过的水平角四、典例分析、举一反三题型一 测量高度问题例1济南泉城广场上的泉标是隶书“泉”字,其造型流畅别致,成了济南的标志和象征李明同学想测量泉标的高度,于是他在广场的A点测得泉标顶端的仰角为60,他又沿着泉标底部方向前进15.2 m,到达B点,测得泉标顶部仰角为80.你能帮李明同学求出泉标的高度吗?(精确到1 m)【答案】泉城广场上泉标的高约为38 m.【解析】如图所示,点C,D分别为泉标的底部和顶端依题意,BAD60,CBD80,

5、AB15.2 m,则ABD100,故ADB180(60100)20.在ABD中,根据正弦定理,. BD38.5(m)在RtBCD中,CDBDsin 8038.5sin 8038(m),即泉城广场上泉标的高约为38 m.解题技巧(测量高度技巧)(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用跟踪训练一1、乙两楼相距200 m,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为30,则甲、乙两楼的高分别是多少?【答

6、案】甲楼高为200 m,乙楼高为 m.【解析】如图所示,AD为乙楼高,BC为甲楼高在ABC中,BC200tan 60200,AC200sin 30400,由题意可知ACDDAC30,ACD为等腰三角形由余弦定理得AC2AD2CD22ADCDcos 120,4002AD2AD22AD23AD2,AD2,AD.故甲楼高为200 m,乙楼高为 m.题型二 测量角度问题例2如图所示,A,B是海面上位于东西方向相距5(3) n mile的两个观测点现位于A点北偏东45方向、B点北偏西60方向的D点有一艘轮船发出求救信号,位于B点南偏西60且与B点相距20 n mile的C点的救援船立即前往营救,其航行速

7、度为30 n mile/h,则该救援船到达D点需要多长时间?【答案】救援船到达D点需要的时间为1 h.【解析】由题意,知AB5(3)n mile,DBA906030,DAB904545,ADB180(4530)105.在DAB中,由正弦定理得,即BD10 n mile.又DBCDBAABC60,BC20 n mile,在DBC中,由余弦定理,得CD 30 n mile,则救援船到达D点需要的时间为1 h.解题技巧: (测量角度技巧)测量角度问题的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量通常是根据题意,从实际问题中抽象出一个或几个三角形,然后

8、通过解这些三角形,得到所求的量,从而得到实际问题的解跟踪训练二1、在海岸A处,发现北偏东45方向,距离A处(1)n mile的B处有一艘走私船,在A处北偏西75的方向,距离A 2 n mile的C处的缉私船奉命以10 n mile的速度追截走私船此时,走私船正以10 n mile/h的速度从B处向北偏东30方向逃窜,问缉私船沿什么方向能最快追上走私船?【答案】缉私船沿北偏东60方向能最快追上走私船.【解析】 设缉私船用t h在D处追上走私船,画出示意图,则有CD10t,BD10t,在ABC中,AB1,AC2,BAC120,由余弦定理,得BC2AB2AC22ABACcosBAC(1)2222(1

9、)2cos 1206,BC,且sinABCsinBAC,ABC45,BC与正北方向成90角CBD9030120,在BCD中,由正弦定理,得sinBCD,BCD30.即缉私船沿北偏东60方向能最快追上走私船.题型三 测量距离问题例3 如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角,再分别测出AC,BC的长b,a则可求出A,B两点间的距离若测得CA400 m,CB600 m,ACB60,试计算AB的长【答案】A,B两点间的距离为200 m.【解析】在ABC中,由余弦定理得AB2AC2BC22ACBCcosACB,AB2400260022400600cos 6

10、0280 000.AB200 (m)即A,B两点间的距离为200 m.例4 如图所示,A,B两点在一条河的两岸,测量者在A的同侧,且B点不可到达,要测出A,B的距离,其方法在A所在的岸边选定一点C,可以测出A,C的距离m,再借助仪器,测出ACB,CAB,在ABC中,运用正弦定理就可以求出AB.若测出AC60 m,BAC75,BCA45,则A,B两点间的距离为_ m. 【答案】20 .【解析】ABC180754560,所以由正弦定理得,AB20(m)即A,B两点间的距离为20 m.解题技巧(测量距离技巧)当A,B两点之间的距离不能直接测量时,求AB的距离分为以下三类:(1)两点间不可通又不可视(

11、如图):可取某点C,使得A,B与C之间的距离可直接测量,测出ACb,BCa以及ACB,利用余弦定理得:AB.(2)两点间可视但不可到达(如图):可选取与B同侧的点C,测出BCa以及ABC和ACB,先使用内角和定理求出BAC,再利用正弦定理求出AB.(3)两点都不可到达(如图):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C,D,测出CDm,ACB,BCD,ADC,ADB,再在BCD中求出BC,在ADC中求出AC,最后在ABC中,由余弦定理求出AB.跟踪训练三1.如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CDa,同时在C

12、,D两点分别测得BCA,ACD,CDB,BDA.在ADC和BDC中,由正弦定理分别计算出AC和BC,再在ABC中,应用余弦定理计算出AB.若测得CD km,ADBCDB30,ACD60,ACB45,求A,B两点间的距离【答案】A,B两点间的距离为 km.【解析】ADCADBCDB60,ACD60,DAC60,ACDC.在BCD中,DBC45,由正弦定理,得BCsinBDCsin 30.在ABC中,由余弦定理,得AB2AC2BC22ACBCcos 452.AB(km)A,B两点间的距离为 km.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计6.4.3 余弦定理、正弦定理第3课时 余弦定理、正弦定理应用举例1. 概念 例1 例2 例3 例4 七、作业课本51页练习,52页习题6.4中剩余题.对于平面图形的计算问题,首先要把所求的量转化到三角形中,然后选用正弦定理、余弦定理解决.构造三角形时,要注意使构造三角形含有尽量多个已知量,这样可以简化运算.学生在这里的数量关系比较模糊,需要强化,三角形相关知识点需要简单回顾。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁