最新高三数学重点知识点总结三篇.docx

上传人:l**** 文档编号:7885315 上传时间:2022-03-06 格式:DOCX 页数:12 大小:33.57KB
返回 下载 相关 举报
最新高三数学重点知识点总结三篇.docx_第1页
第1页 / 共12页
最新高三数学重点知识点总结三篇.docx_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《最新高三数学重点知识点总结三篇.docx》由会员分享,可在线阅读,更多相关《最新高三数学重点知识点总结三篇.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、最新高三数学重点知识点总结三篇 高三备战高考的时间是特别紧促的,有许多门科目都要复习,要如何提高高三数学的复习效率是同学们的难题。下面就是我给大家带来的高三数学重点学问点总结,希望能帮助到大家! 高三数学重点学问点总结(一) 1.数列的定义 按肯定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. (1)从数列定义可以看出,数列的数是按肯定次序排列的,假如组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的数必需不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2

2、次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. (5)次序对于数列来讲是非常重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而2,3,4,5,6中元素不论按怎样的次序排列都是同一个集合. 2.数列的分类 (1)依据数列的项数多少可以对数列进行分

3、类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,假如把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列. (2)根据项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摇摆数列、常数列. 3.数列的通项公式 数列是按肯定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的, 这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不

4、是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不肯定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…, 由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多视察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循. 再强调对于数列通项公式的理解留意以下几点: (1)数列的通项公式事实上是一个以正整数集N_或它的有限子集1,2,…,n为定义域的函数的表达式. (2)假如知道了数列的通项公式,那么依次用1,2,3,&hel

5、lip;去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可推断某数是否是某数列中的一项,假如是的话,是第几项. (3)如全部的函数关系不肯定都有解析式一样,并不是全部的数列都有通项公式. 如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式. (4)有的数列的通项公式,形式上不肯定是的,正如举例中的: (5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不. 4.数列的图象 对于数列4,5,6,7,8,9,1

6、0每一项的序号与这一项有下面的对应关系: 序号:1234567 项:45678910 这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集1,2,3,…,n)的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特别的函数,它的自变量只能取正整数. 由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式. 数列是一种特别的函数,数列是可以用图象直观地表示的. 数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为便利起见,

7、在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的改变状况,但不精确. 把数列与函数比较,数列是特别的函数,特别在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点. 5.递推数列 一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10. 数列还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。 高三数学重点学问点总结(二) 随机抽样 简介 (抽签法、随机样数表法)经常用于总体个数较少时,它的主要特征是从总体中逐个抽取; 优点:操作简便易行 缺点:总体过

8、大不易实行 方法 (1)抽签法 一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌匀称后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。 (抽签法简洁易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌匀称”就比较困难,用抽签法产生的样本代表性差的可能性很大) (2)随机数法 随机抽样中,另一个常常被采纳的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。 分层抽样 简介 分层抽样主要特征分层按比例抽样,主要运用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。 定义 一般地,在抽样时,

9、将总体分成互不交叉的层,然后根据肯定的比例,从各层独立地抽取肯定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。 整群抽样 定义 什么是整群抽样 整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。 应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。 优缺点 整群抽样的优点是实施便利、节约经费; 整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简洁随机抽样。 实施步骤 先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内全部个体或

10、单元均进行调查。抽样过程可分为以下几个步骤: 一、确定分群的标注 二、总体(N)分成若干个互不重叠的部分,每个部分为一群。 三、据各样本量,确定应当抽取的群数。 四、采纳简洁随机抽样或系统抽样方法,从i群中抽取确定的群数。 例如,调查中学生患近视眼的状况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。 与分层抽样的区分 整群抽样与分层抽样在形式上有相像之处,但事实上差别很大。 分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大; 分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,

11、要么整群不被抽取。 系统抽样 定义 当总体中的个体数较多时,采纳简洁随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后根据预先定出的规则,从每一部分抽取一个个体,得到所须要的样本,这种抽样叫做系统抽样。 步骤 一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样: (1)先将总体的N个个体编号。有时可干脆利用个体自身所带的号码,如学号、准考证号、门牌号等; (2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n; (3)在第一段用简洁随机抽样确定第一个个体编号l(l≤k); (4)根据肯定的规则抽取样本。通常是将l加上

12、间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获得整个样本。 高三数学重点学问点总结(三) (一)导数第肯定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量x(x0+x也在该邻域内)时,相应地函数取得增量y=f(x0+x)-f(x0);假如y与x之比当x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第肯定义 (二)导数其次定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有改变x(x-x0也在该邻域内)时,相

13、应地函数改变y=f(x)-f(x0);假如y与x之比当x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数其次定义 (三)导函数与导数 假如函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。 (四)单调性及其应用 1.利用导数探讨多项式函数单调性的一般步骤 (

14、1)求f(x) (2)确定f(x)在(a,b)内符号(3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数 2.用导数求多项式函数单调区间的一般步骤 (1)求f(x) (2)f(x)>0的解集与定义域的交集的对应区间为增区间;f(x)<0的解集与定义域的交集的对应区间为减区间 本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第12页 共12页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁