《浙大版概率论与数理统计答案---第五章.doc》由会员分享,可在线阅读,更多相关《浙大版概率论与数理统计答案---第五章.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
第五章 大数定律及中心极限定理注意: 这是第一稿(存在一些错误)1、 解(1)由于,且,利用马尔科夫不等式,得(2),利用切比雪夫不等式,所求的概率为:2、解:,3、 解 服从参数为0.5的几何分布,可求出于是令,利用切比雪夫不等式,得有从而可以求出4、解:,。则,。,。,所以。5、 解 服从大数定律。由题意得:由根据马尔科夫大数定律,可判断该序列服从大数定律的。6、解:(1),则连续。,则,有,则,。(2) 连续,则,有,则,。(3),故(4)原式依概率收敛,即 7 解 (1)由题意得:根据推论5.1.4,可求得(2)由题意得:,根据中心极限定理,可知(3) ,利用中心极限定理,可知从而8、解:,9、解 (1)由题意得:记,引入随机变量,且于是服从二项分布:方法一:(Y的精确分布)方法二(泊松分布)近似服从参数为的泊松分布方法三:(中心极限定理)近似服从于是: (2)设至少需要n次观察记,这时于是近似服从经查表有,从而求得n=11710、解:,则 11 、解 (1)由题意得,引入随机变量,且所求的概率为:(2)用表示第i名选手的得分,则并且同时,于是所求的概率为: