《专题二 第1讲三角函数的图象与性质.doc》由会员分享,可在线阅读,更多相关《专题二 第1讲三角函数的图象与性质.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、06 第1讲三角函数的图象与性质【高考考情解读】1.对三角函数的图象和性质的考查中,以图象的变换,函数的单调性、奇偶性、周期性、对称性、最值等作为热点内容,并且往往与三角变换公式相互联系,有时也与平面向量,解三角形或不等式内容相互交汇.2.题型多以小而活的选择题、填空题来呈现,如果设置解答题一般与三角变换、解三角形、平面向量等知识进行综合考查,题目难度为中、低档1 三角函数定义、同角关系与诱导公式(1)定义:设是一个任意角,它的终边与单位圆交于点P(x,y),则sin y,cos x,tan .各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦(2)同角关系:sin2cos21,tan
2、 .(3)诱导公式:在,kZ的诱导公式中“奇变偶不变,符号看象限”2 三角函数的图象及常用性质函数ysin xycos xytan x图象单调性在2k,2k(kZ)上单调递增;在2k,2k(kZ)上单调递减在2k,2k(kZ)上单调递增;在2k,2k(kZ)上单调递减在(k,k)(kZ)上单调递增对称性对称中心:(k,0)(kZ);对称轴:xk(kZ)对称中心:(k,0)(kZ);对称轴:xk(kZ)对称中心:(,0)(kZ)3 三角函数的两种常见变换考点一三角函数的概念、诱导公式及同角三角函数的基本关系问题例1(1)如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针针尖位置P(
3、x,y)若初始位置为P0,当秒针从P0(此时t0)正常开始走时,那么点P的纵坐标y与时间t的函数关系为()Aysin BysinCysin Dysin(2)已知点P落在角的终边上,且0,2),则的值为()A. B. C. D. 弄清三角函数的概念是解答本题的关键 (1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关(2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等 (1)已知(,0),tan(3),则c
4、os的值为()A. B C. D(2)如图,以Ox为始边作角(0),终边与单位圆相交于点P,已知点P的坐标为.求的值考点二三角函数yAsin(x)的图象及解析式例2函数f(x)sin(x)(其中|0,0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A;由函数的周期确定;确定常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置(2)在图象变换过程中务必分清是先相位变换,还是先周期变换变换只是相对于其中的自变量x而言的,如果x的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向 (1)(2013四川)函数f(x)2si
5、n(x)(0,0)的最小正周期为.求的值;讨论f(x)在区间上的单调性1求函数yAsin(x)(或yAcos(x),或yAtan(x)的单调区间(1)将化为正(2)将x看成一个整体,由三角函数的单调性求解2 已知函数yAsin(x)B(A0,0)的图象求解析式(1)A,B.(2)由函数的周期T求,.(3)利用与“五点法”中相对应的特殊点求.3 函数yAsin(x)的对称轴一定经过图象的最高点或最低点4 求三角函数式最值的方法(1)将三角函数式化为yAsin(x)B的形式,进而结合三角函数的性质求解(2)将三角函数式化为关于sin x,cos x的二次函数的形式,进而借助二次函数的性质求解5 特
6、别提醒:进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身.1 假设若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”给出下列函数:f(x)sin xcos x;f(x)(sin xcos x);f(x)sin x2;f(x)sin x.则其中属于“互为生成函数”的是()A B C D2 已知函数f(x)sin xcos xcos2x(0),直线xx1,xx2是yf(x)图象的任意两条对称轴,且|x1x2|的最小值为.(1)求f(x)的表达式;(2)将函数f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数yg(x
7、)的图象,若关于x的方程g(x)k0在区间0,上有且只有一个实数解,求实数k的取值范围(推荐时间:60分钟)一、选择题1 点P从(1,0)出发,沿单位圆x2y21逆时针方向运动弧长到达Q点,则Q点的坐标为()A. B. C. D.2 已知为第二象限角,sin cos ,则cos 2等于()A B C. D.3 将函数ycos的图象上各点横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是()Ax Bx Cx Dx4 若函数yAsin(x)(A0,0,|0)的图象关于直线x对称,且f0,则的最小值为()A2 B4 C6 D86 (2013江西)如图,已知l1l2,圆
8、心在l1上、半径为1 m的圆O在t0时与l2相切于点A,圆O沿l1以1 m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令ycos x,则y与时间t(0t1,单位:s)的函数yf(t)的图象大致为()二、填空题7 已知角的顶点为坐标原点,始边为x轴的正半轴,若P(4,y)是角终边上一点,且sin ,则y_.8 函数f(x)sin xcos x|sin xcos x|对任意的xR都有f(x1)f(x)f(x2)成立,则|x2x1|的最小值为_9 已知f(x)2sinm在x0,上有两个不同的零点,则m的取值范围为_10关于函数f(x)sin 2xcos 2x有下列命题:yf(x)的周期为;x是yf(x)的一条对称轴;是yf(x)的一个对称中心;将yf(x)的图象向左平移个单位,可得到ysin 2x的图象,其中正确命题的序号是_(把你认为正确命题的序号都写上)三、解答题11(2013山东)设函数f(x)sin2xsin xcos x(0),且yf(x)图象的一个对称中心到最近的对称轴的距离为.(1)求的值;(2)求f(x)在区间上的最大值和最小值12(2012湖南)已知函数f(x)Asin(x)的部分图象如图所示(1)求函数f(x)的解析式;(2)求函数g(x)ff的单调递增区间