《高中数学 正切函数图象与性质 新人教A版必修优秀课件.ppt》由会员分享,可在线阅读,更多相关《高中数学 正切函数图象与性质 新人教A版必修优秀课件.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学 正切函数图象与性质课件 新人教A版必修第1页,本讲稿共20页1.4.3正切函数的图象及性质第2页,本讲稿共20页函数y=sinxy=cosx图形定义域值域最值单调性奇偶性周期对称性1-1时,时,时,时,时,时,时,时,增函数增函数减函数减函数增函数增函数减函数减函数1-1对称轴:对称轴:对称中心:对称中心:对称轴:对称轴:对称中心:对称中心:奇函数奇函数偶函数偶函数第3页,本讲稿共20页 一、一、你能否根据研究正弦、余弦函数的图象和你能否根据研究正弦、余弦函数的图象和性质的经验性质的经验 以同样的方法研究正切函数以同样的方法研究正切函数的图像和性质的图像和性质?探究探究第4页,本讲稿
2、共20页1、利用正切函数的定义,说出正切函数的定义域;、利用正切函数的定义,说出正切函数的定义域;是是周期函数周期函数,是它的一个周期是它的一个周期 思考思考由诱导公式知由诱导公式知2 2、正切函数、正切函数 是否为是否为周期函数周期函数?第5页,本讲稿共20页3 3、正切函数、正切函数 是否具有是否具有奇偶性奇偶性?思考思考由诱导公式知由诱导公式知正切函数是正切函数是奇函数奇函数.第6页,本讲稿共20页 函数函数图象的几何作法图象的几何作法-11-1-作法作法:(1)等分等分(2)作正弦线作正弦线(3)平移平移(4)连线连线2.第7页,本讲稿共20页4、能否由正切线的变化规律及正切函数周期性
3、来讨论它的单调性、能否由正切线的变化规律及正切函数周期性来讨论它的单调性?思考思考 o(1,0)AT正切线正切线AT o(1,0)AT o(1,0)AT o(1,0)AT第8页,本讲稿共20页1.4.3 正切函数的图象与性质正切函数的图象与性质AT0XY问题问题2 2、如何利用正切线画出函数、如何利用正切线画出函数 ,的图的图像?像?第9页,本讲稿共20页作法作法:(1)等分:等分:(2)作正切线作正切线(3)平移平移(4)连线连线把单位圆右半圆分成把单位圆右半圆分成8等份。等份。,利用正切线画出函数利用正切线画出函数 ,的图像的图像:第10页,本讲稿共20页yx1-1/2-/23/2-3/2
4、-0定义域值域周期性奇偶性单调性 RT=奇函数 函数y=tanx增区间二:性质t tt+t+t-t-你能从正切函数的图象出发你能从正切函数的图象出发,讨论它的性质吗讨论它的性质吗?第11页,本讲稿共20页正切曲线0是由通过点 且与 y 轴相互平行的直线隔开的无穷多支曲线组成渐进线渐进线1.4.3 正切函数的图象与性质正切函数的图象与性质第12页,本讲稿共20页 定义域定义域:值域值域:周期性:周期性:奇偶性:奇偶性:在每一个开区间在每一个开区间 ,内都是增函数。内都是增函数。正正切切函函数数图图像像奇函数,图象关于原点对称。奇函数,图象关于原点对称。R 单调性:单调性:(6)渐近线方程:渐近线
5、方程:(7)(7)对称中心对称中心渐进线性质:渐进线第13页,本讲稿共20页(1)正切函数是正切函数是整个定义域整个定义域整个定义域整个定义域上的上的增增函数吗?为什么?函数吗?为什么?(2)正切函数会不会在某一区间内是正切函数会不会在某一区间内是减减函数?为什么?函数?为什么?问题:问题:AB 在每一个开区间 ,内都是增函数。问题讨论第14页,本讲稿共20页A 是奇函数B 在整个定义域上是增函数C 在定义域内无最大值和最小值D 平行于 轴的的直线被正切曲线各支所截线段相等1关于正切函数,下列判断不正确的是()函数的一个对称中心是()A.B.C.D.基础练习BC第15页,本讲稿共20页合作学习第16页,本讲稿共20页例题分析第17页,本讲稿共20页解:0yx解法解法1解法解法2例 2例题分析第18页,本讲稿共20页例题分析第19页,本讲稿共20页四、小结:正切函数的图象与性质四、小结:正切函数的图象与性质 2、性质性质:定义域:值域:周期性:奇偶性:在每一个开区间 ,内都是增增函数。奇函数,图象关于原点对称。R(6)单调性:单调性:(7)渐近线方程:渐近线方程:(5)对称性:对称中心:对称性:对称中心:无对称轴第20页,本讲稿共20页