《递归与分治精选文档.ppt》由会员分享,可在线阅读,更多相关《递归与分治精选文档.ppt(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、递归与分治本讲稿第一页,共三十七页n将要求解的较大规模的问题分割成k个更小规模的子问题。算法总体思想nT(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n)=n对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。本讲稿第二页,共三十七页算法总体思想n对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n
2、/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。本讲稿第三页,共三十七页算法总体思想n将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。nT(n)=n/2T(n/4)T(n/4)T(n/4)T
3、(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)本讲稿第四页,共三十七页算法总体思想n将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)
4、n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)分治法的设计思想是,将一个难以直接解决的大问题,分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分割成一些规模较小的相同问题,以便各个击破,分而治之。分而治之。本讲稿第五页,共三十七页2.1 递归的概念n直接或间接地调用自身的算法称为递归算法递归算法
5、。用函数自身给出定义的函数称为递归函数递归函数。n由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。n分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。下面来看几个实例。本讲稿第六页,共三十七页2.1 递归的概念例例1 1 阶乘函数阶乘函数 阶乘函数可递归地定义为:边界条件边界条件递归方程递归方程边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。本讲稿第
6、七页,共三十七页2.1 递归的概念例例2 Fibonacci2 Fibonacci数列数列无穷数列1,1,2,3,5,8,13,21,34,55,称为Fibonacci数列。它可以递归地定义为:边界条件边界条件递归方程递归方程第n个Fibonacci数可递归地计算如下:intfibonacci(intn)if(nm1;正整数n的最大加数n1不大于m的划分由n1=m的划分和n1n-1 的划分组成。(3)q(n,n)=1+q(n,n-1);正整数n的划分由n1=n的划分和n1n-1的划分组成。2.1 递归的概念例例3 3 整数划分问题整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,
7、因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。本讲稿第十三页,共三十七页2.1 递归的概念例例3 3 整数划分问题整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。正整数n的划分数p(n)=q(n,n)。本讲稿第十四页,共三十七
8、页2.1 递归的概念例例4 Hanoi4 Hanoi塔问题塔问题设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。本讲稿第十五页,共三十七页在问题规模较大时,较难找到一般的方法,因此我们尝试用递归技术来解决这个问题。当n=1时,问题比较简单。此时,只要将编号为1的圆
9、盘从塔座a直接移至塔座b上即可。当n1时,需要利用塔座c作为辅助塔座。此时若能设法将n-1个较小的圆盘依照移动规则从塔座a移至塔座c,然后,将剩下的最大圆盘从塔座a移至塔座b,最后,再设法将n-1个较小的圆盘依照移动规则从塔座c移至塔座b。由此可见,n个圆盘的移动问题可分为2次n-1个圆盘的移动问题,这又可以递归地用上述方法来做。由此可以设计出解Hanoi塔问题的递归算法如下。2.1 递归的概念例例4 Hanoi4 Hanoi塔问题塔问题voidhanoi(intn,inta,intb,intc)if(n0)hanoi(n-1,a,c,b);move(a,b);hanoi(n-1,c,b,a)
10、;本讲稿第十六页,共三十七页递归小结优点:优点:结构清晰,可读性强,而且容易用结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。为设计算法、调试程序带来很大方便。缺点:缺点:递归算法的运行效率较低,无论是耗费递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算的计算时间还是占用的存储空间都比非递归算法要多。法要多。本讲稿第十七页,共三十七页解决方法:解决方法:在递归算法中消除递归调用,使其转化在递归算法中消除递归调用,使其转化为非递归算法。为非递归算法。1 1、采用一个用户定义的栈来模拟
11、系统的递归调、采用一个用户定义的栈来模拟系统的递归调用工作栈。该方法通用性强,但本质上还是递归,用工作栈。该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效只不过人工做了本来由编译器做的事情,优化效果不明显。果不明显。2 2、用递推来实现递归函数。、用递推来实现递归函数。3 3、通过变换能将一些递归转化为尾递归,从而迭代求、通过变换能将一些递归转化为尾递归,从而迭代求出结果。出结果。后两种方法在时空复杂度上均有较大改善,但后两种方法在时空复杂度上均有较大改善,但其适用范围有限。其适用范围有限。递归小结本讲稿第十八页,共三十七页为什么要分治?本讲稿第十九页,共三十七页分
12、治法的适用条件分治法所能解决的问题一般具有以下几个特征:分治法所能解决的问题一般具有以下几个特征:分治法所能解决的问题一般具有以下几个特征:分治法所能解决的问题一般具有以下几个特征:n该问题的规模缩小到一定的程度就可以容易地解决;该问题的规模缩小到一定的程度就可以容易地解决;n该问题可以分解为若干个规模较小的相同问题,即该问题具该问题可以分解为若干个规模较小的相同问题,即该问题具有有最优子结构性质最优子结构性质n利用该问题分解出的子问题的解可以合并为该问题的解;利用该问题分解出的子问题的解可以合并为该问题的解;n该问题所分解出的各个子问题是相互独立的,即子问题之间不包该问题所分解出的各个子问题
13、是相互独立的,即子问题之间不包含公共的子问题。含公共的子问题。因为问题的计算复杂性一般是随着问题规模的增加而增加,因此大部分问题满足这个特征。这条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪贪心算法心算法或动态规划动态规划。这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态动态规划规划较好。本讲稿第二十页,共三十七页divide-and-conquer(P)if(|P|=n0
14、)adhoc(P);/解决小规模的问题 divide P into smaller subinstances P1,P2,.,Pk;/分解问题 for(i=1,i=k,i+)yi=divide-and-conquer(Pi);/递归的解各子问题 return merge(y1,.,yk);/将各子问题的解合并为原问题的解 分治法的基本步骤人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡平衡(balancing)子问题子问题的思想,它几乎总是比子问题规模不等的做法要好。
15、本讲稿第二十一页,共三十七页分治法的复杂性分析一个分治法将规模为n的问题分成k个规模为nm的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:通过迭代法求得方程的解:注意注意:递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当minmi+1时,T(mi)T(n)T(mi+1)
16、。本讲稿第二十二页,共三十七页分析:如果n=1即只有一个元素,则只要比较这个元素和x就可以确定x是否在表中。因此这个问题满足分治法的第一个适用条件分析:比较x和a的中间元素amid,若x=amid,则x在L中的位置就是mid;如果xai,同理我们只要在amid的后面查找x即可。无论是在前面还是后面查找x,其方法都和在a中查找x一样,只不过是查找的规模缩小了。这就说明了此问题满足分治法的第二个和第三个适用条件。分析:很显然此问题分解出的子问题相互独立,即在ai的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。二分搜索技术给定已按升序排好序的给定已按升序排好序的n个元素个元素a0:
17、n-1,现要在这,现要在这n个元素中找出一个元素中找出一特定元素特定元素x。分析:分析:n该问题的规模缩小到一定的程度就可以容易地解决;该问题的规模缩小到一定的程度就可以容易地解决;n该问题可以分解为若干个规模较小的相同问题该问题可以分解为若干个规模较小的相同问题;n分解出的子问题的解可以合并为原问题的解;分解出的子问题的解可以合并为原问题的解;n分解出的各个子问题是相互独立的。分解出的各个子问题是相互独立的。本讲稿第二十三页,共三十七页二分搜索技术给定已按升序排好序的给定已按升序排好序的n个元素个元素a0:n-1,现要在这,现要在这n个元素中找出一特定个元素中找出一特定元素元素x。据此容易设
18、计出二分搜索算法二分搜索算法:templateintBinarySearch(Typea,constType&x,intl,intr)while(r=l)intm=(l+r)/2;if(x=am)returnm;if(xam)r=m-1;elsel=m+1;return-1;算法复杂度分析:算法复杂度分析:每执行一次算法的while循环,待搜索数组的大小减少一半。因此,在最坏情况下,while循环被执行了O(logn)次。循环体内运算需要O(1)时间,因此整个算法在最坏情况下的计算时间复杂性为O(logn)。本讲稿第二十四页,共三十七页大整数的乘法 请设计一个有效的算法,可以进行两个请设计一个
19、有效的算法,可以进行两个n n位大整数的乘法运算位大整数的乘法运算u小学的方法:O(n2)效率太低u分治法:X=Y=X=a2n/2+bY=c2n/2+dXY=ac2n+(ad+bc)2n/2+bdabcd复杂度分析复杂度分析T(n)=O(n2)没有改进没有改进本讲稿第二十五页,共三十七页大整数的乘法 请设计一个有效的算法,可以进行两个请设计一个有效的算法,可以进行两个n n位大整数的乘法运算位大整数的乘法运算u小学的方法:O(n2)效率太低u分治法:XY=ac2n+(ad+bc)2n/2+bd为了降低时间复杂度,必须减少乘法的次数。1.XY=ac2n+(a-c)(b-d)+ac+bd)2n/2
20、+bd2.XY=ac2n+(a+c)(b+d)-ac-bd)2n/2+bd复杂度分析复杂度分析T(n)=O(nlog3)=O(n1.59)较大的改进较大的改进细节问题细节问题:两个XY的复杂度都是O(nlog3),但考虑到a+c,b+d可能得到m+1位的结果,使问题的规模变大,故不选择第2种方案。本讲稿第二十六页,共三十七页大整数的乘法 请设计一个有效的算法,可以进行两个请设计一个有效的算法,可以进行两个n n位大整数的乘法运算位大整数的乘法运算u小学的方法:O(n2)效率太低u分治法:O(n1.59)较大的改进u更快的方法?如果将大整数分成更多段,用更复杂的方式把它们组合起来,将有可能得到更
21、优的算法。最终的,这个思想导致了快速傅利叶变换快速傅利叶变换(FastFourierTransform)的产生。该方法也可以看作是一个复杂的分治算法。本讲稿第二十七页,共三十七页合并排序基本思想:基本思想:将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。voidMergeSort(Typea,intleft,intright)if(leftright)/至少有2个元素inti=(left+right)/2;/取中点mergeSort(a,left,i);mergeSort(a,i+1,right);merge(a,b,lef
22、t,i,right);/合并到数组bcopy(a,b,left,right);/复制回数组a复杂度分析复杂度分析T(n)=O(nlogn)渐进意义下的最优算法本讲稿第二十八页,共三十七页合并排序算法mergeSort的递归过程可以消去。初始序列49 38 65 97 76 13 2738 49 65 97 13 76 27第一步第二步38 49 65 97 13 27 76第三步13 27 38 49 65 76 97本讲稿第二十九页,共三十七页合并排序&最坏时间复杂度:最坏时间复杂度:O(nlogn)&平均时间复杂度:平均时间复杂度:O(nlogn)&辅助空间:辅助空间:O(n)本讲稿第三十
23、页,共三十七页快速排序在快速排序中,记录的比较和交换是从两端向中间进行的,关键字较大的记录一次就能交换到后面单元,关键字较小的记录一次就能交换到前面单元,记录每次移动的距离较大,因而总的比较和移动次数较少。templatevoidQuickSort(Typea,intp,intr)if(pr)intq=Partition(a,p,r);QuickSort(a,p,q-1);/对左半段排序QuickSort(a,q+1,r);/对右半段排序本讲稿第三十一页,共三十七页快速排序templateintPartition(Typea,intp,intr)inti=p,j=r+1;Typex=ap;/将
24、x的元素交换到右边区域while(true)while(a+ix);if(i=j)break;Swap(ai,aj);ap=aj;aj=x;returnj;初始序列6,7,5,2,5,8j-;5,7,5,2,6,8i+;5,6,5,2,7,8j-;5,2,5,6,7,8i+;完成6,7,5,2,5,85,2,5 6 7,8本讲稿第三十二页,共三十七页templateintRandomizedPartition(Typea,intp,intr)inti=Random(p,r);Swap(ai,ap);returnPartition(a,p,r);快速排序快速排序算法的性能取决于划分的对称性。通过
25、修改算法partition,可以设计出采用随机选择策略的快速排序算法。在快速排序算法的每一步中,当数组还没有被划分时,可以在ap:r中随机选出一个元素作为划分基准,这样可以使划分基准的选择是随机的,从而可以期望划分是较对称的。&最坏时间复杂度:最坏时间复杂度:O(n2)&平均时间复杂度:平均时间复杂度:O(nlogn)&辅助空间:辅助空间:O(n)或或O(logn)本讲稿第三十三页,共三十七页循环赛日程表设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他n-1个选手各赛一次;(2)每个选手一天只能赛一次;(3)循环赛一共进行n-1天。按分治策略,将所有的选手分为两半,n个选手的比赛日程
26、表就可以通过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割,直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让这2个选手进行比赛就可以了。1234567821436587341278564321876556781234658721437856341287654321本讲稿第三十四页,共三十七页相关练习n1046正整数划分问题n1115嫦娥姐姐的玉兔n1264AckermannFunctionn1437校长杯本讲稿第三十五页,共三十七页致谢n本讲稿主要内容来源:n福州大学王晓东教授计算机算法设计与分析讲义n在此,致以衷心感谢本讲稿第三十六页,共三十七页Thankyou.本讲稿第三十七页,共三十七页