第二章软件无线电基本理论---电子科技大学(经典)ppt课件.ppt

上传人:飞****2 文档编号:78715515 上传时间:2023-03-19 格式:PPT 页数:105 大小:1.29MB
返回 下载 相关 举报
第二章软件无线电基本理论---电子科技大学(经典)ppt课件.ppt_第1页
第1页 / 共105页
第二章软件无线电基本理论---电子科技大学(经典)ppt课件.ppt_第2页
第2页 / 共105页
点击查看更多>>
资源描述

《第二章软件无线电基本理论---电子科技大学(经典)ppt课件.ppt》由会员分享,可在线阅读,更多相关《第二章软件无线电基本理论---电子科技大学(经典)ppt课件.ppt(105页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第二章第二章 软件无线电软件无线电理论基础理论基础主讲人:李玉柏主讲人:李玉柏2.1 信号采样理论信号采样理论 软件无线电的核心思想是对天线感应的射频软件无线电的核心思想是对天线感应的射频模拟信号尽可能地直接数字化,将其变为适合于模拟信号尽可能地直接数字化,将其变为适合于数字信号处理器(数字信号处理器(DSP)或计算机处理的数据流,)或计算机处理的数据流,然后由软件(算法)来完成各种各样的功能,使然后由软件(算法)来完成各种各样的功能,使其具有更好的可扩展性和应用环境适应性。其具有更好的可扩展性和应用环境适应性。所以,如何对所感兴趣的模拟信号进行采样所以,如何对所感兴趣的模拟信号进行采样?采样

2、率应该多大?软件无线电的采样有些什么?采样率应该多大?软件无线电的采样有些什么特性?成为了最基本,也是最关键的问题特性?成为了最基本,也是最关键的问题信号采样图示信号采样图示0(a)t(b)t02.1.1 基本采样理论基本采样理论 Nyquist采样定理采样定理 Nyquist采样定理采样定理 设有一个频率带限信号设有一个频率带限信号 x(t),其频带限制在,其频带限制在(0,fh)之间,如果以不小于之间,如果以不小于fs2fh 的采样速率的采样速率对对 x(t)进行等间隔采样,得到时间离散的采样进行等间隔采样,得到时间离散的采样信号信号 x(n)x(nTs)(其中(其中Ts1/fs称为采样间

3、称为采样间隔)隔),则原信号则原信号 x(t)将被所得的采样值将被所得的采样值 x(n)完全完全地确定。地确定。定理核心:如何才能准确的确定原信号?定理核心:如何才能准确的确定原信号?以不低于信号最高频率的两倍的采样速率进以不低于信号最高频率的两倍的采样速率进行采样!行采样!If()混叠混叠 so,抽样前后的信号频谱抽样前后的信号频谱2.1.2 带通信号采样理论带通信号采样理论 如果信号的频率分布在某一有限的频带如果信号的频率分布在某一有限的频带(fL,fH)上时,如果仍然按照上时,如果仍然按照Nyquist定理采样,则采样频率定理采样,则采样频率将会非常的高,以致很难实现。其后的处理也很难将

4、会非常的高,以致很难实现。其后的处理也很难满足要求,满足要求,怎么办?怎么办?带通采样定理:设一个频率带限信号带通采样定理:设一个频率带限信号 x(t),如果,如果其采样速率其采样速率fs 满足:满足:式中,式中,n 取能满足取能满足fs=2(f H-f L)=2B 的最大整数的最大整数(0,1,2,),则用,则用fs 进行等间隔采样所得到的信进行等间隔采样所得到的信号采样值号采样值 x(nTs)能准确的确定原信号能准确的确定原信号x(t)。注意:注意:1)上述采样定理的适用前提条件是:只允许在上述采样定理的适用前提条件是:只允许在其中的一个频带上存在信号,而不允许在不同其中的一个频带上存在信

5、号,而不允许在不同的频带上同时存在信号,否则将引起混叠。的频带上同时存在信号,否则将引起混叠。2)为了能使用最低采样速率即:为了能使用最低采样速率即:f S=2B,带通,带通信号的中心频率必须满足信号的中心频率必须满足 即信号的最高频率加上最低频率是带宽的整即信号的最高频率加上最低频率是带宽的整数倍。数倍。3)带通采样的结果是把位于带通采样的结果是把位于(nB,(n+1)B)(n=0,1,2.)不同频带上的信号,都挪位于不同频带上的信号,都挪位于 (0,B)上上相同的基带信号频谱来表示,但是当相同的基带信号频谱来表示,但是当 n 为基数时,为基数时,其频率对应关系是相对于中心频率其频率对应关系

6、是相对于中心频率“反折反折”的,的,即奇数通带上的高频分量对应基带上的低频分量,即奇数通带上的高频分量对应基带上的低频分量,奇数通带上的低频分量对应基带上的高频分量。奇数通带上的低频分量对应基带上的高频分量。带通信号采样的频率对应关系带通信号采样的频率对应关系2.2 软件无线电中的采样理论软件无线电中的采样理论 由于软件无线电所覆盖的频率范围比较宽由于软件无线电所覆盖的频率范围比较宽(软件无线电广泛的适应性决定的),故采用(软件无线电广泛的适应性决定的),故采用Nyquist采样定理是不现实的。所以,必须采用采样定理是不现实的。所以,必须采用带通采样。带通采样。以下是在软件无线电中常用的采样模

7、型。以下是在软件无线电中常用的采样模型。2.2.1 窄带中频采样数字化窄带中频采样数字化滤波滤波A/DDSP(软件)(软件)f S理想带通采样模型理想带通采样模型理想能成为现实吗?理想能成为现实吗?1)由带通采样定理知:当采样速率)由带通采样定理知:当采样速率fs固定的固定的时候,该模型所能处理的信号的中心频率只时候,该模型所能处理的信号的中心频率只 有有限的几个,即:有有限的几个,即:2)该模型要求)该模型要求 A/D 前面的抗混叠滤波器在前面的抗混叠滤波器在整个频带上保持相同的滤波器带宽和阻带特整个频带上保持相同的滤波器带宽和阻带特性,这几乎是不可能做到的。性,这几乎是不可能做到的。问题的

8、解决问题的解决超外差接收体制超外差接收体制滤波滤波放大放大A/DDSP(软件)(软件)本振本振fLfSfi 该模型先用一个本振信号与被数字化的输入该模型先用一个本振信号与被数字化的输入信号进行混频,将其变换为统一的中频信号,信号进行混频,将其变换为统一的中频信号,然后进行数字化。然后进行数字化。这样,这样,A/D之前的信号的中心频率是固定不变之前的信号的中心频率是固定不变的,如果的,如果 fo 取值恰当,则取值恰当,则A/D前的抗混叠滤波前的抗混叠滤波器就会容易的多。器就会容易的多。有得必有失,亘古不变。新问题有得必有失,亘古不变。新问题?回顾无线电的设计思想:回顾无线电的设计思想:A/D尽可

9、能的靠近天线。尽可能的靠近天线。超外差体系:超外差体系:增加了很多模拟电路,如:本振,增加了很多模拟电路,如:本振,混频,混频,滤波等等。这些模拟电路不仅造成了信号的失滤波等等。这些模拟电路不仅造成了信号的失真,而且对缩小体积,降低成本和功耗也是极真,而且对缩小体积,降低成本和功耗也是极其不利的。其不利的。总之,超外差中频数字化体制严格来将并不是总之,超外差中频数字化体制严格来将并不是软件无线电概念上的一种理想结构形式。其过软件无线电概念上的一种理想结构形式。其过多的模拟信号处理环节造成的适应性不强,可多的模拟信号处理环节造成的适应性不强,可扩展性差的弊端是显而易见的。扩展性差的弊端是显而易见

10、的。2.2.2 宽带中频采样数字化宽带中频采样数字化滤波滤波滤波滤波滤波滤波A/DDSPfL1:9601430MHz 步进步进 100MHzfL2:1080MHzfS:120MHz30500MHzf0:930MHzB:50MHzf0:150MHzB:50MHz一个可供实用的宽带中频数字化接一个可供实用的宽带中频数字化接收机组成框图收机组成框图2.2.2 宽带中频采样数字化宽带中频采样数字化滤波滤波滤波滤波滤波滤波A/DDSPfL1:9601430MHz 步进步进 100MHzfL2:1080MHzfS:120MHz30500MHzf0:930MHzB:50MHzf0:150MHzB:50MHz

11、2.2.2 宽带中频采样数字化宽带中频采样数字化滤波滤波滤波滤波滤波滤波A/DDSPfL1:9601430MHz 步进步进 100MHzfL2:1080MHzfS:120MHz30500MHzf0:930MHzB:50MHzf0:150MHzB:50MHz2.2.2 宽带中频采样数字化宽带中频采样数字化滤波滤波滤波滤波滤波滤波A/DDSPfL1:9601430MHz 步进步进 100MHzfL2:1080MHzfS:120MHz30500MHzf0:930MHzB:50MHzf0:150MHzB:50MHz2.2.2 宽带中频采样数字化宽带中频采样数字化滤波滤波滤波滤波滤波滤波 Bs(信号带宽

12、),中频带宽内(信号带宽),中频带宽内包含有多个信道,至于对带宽包含有多个信道,至于对带宽B内位于某一特定内位于某一特定信道上的信号所需进行的解调、分析、识别等处信道上的信号所需进行的解调、分析、识别等处理,将由后续的信号处理器及软件来完成。理,将由后续的信号处理器及软件来完成。2)通过加载不同的信号处理软件可以实现对不通过加载不同的信号处理软件可以实现对不同体制,不同带宽以及不同种类的信号的接收解同体制,不同带宽以及不同种类的信号的接收解调以及其他处理任务,这样对信号的环境的适应调以及其他处理任务,这样对信号的环境的适应性以及可扩展能力就大大提高了。性以及可扩展能力就大大提高了。3)由于中频

13、带宽增加了,本振信号就可以按照由于中频带宽增加了,本振信号就可以按照大步进来设计,这样可以大大简化本振源的设计,大步进来设计,这样可以大大简化本振源的设计,有利于减小体积,改善性能,降低成本。有利于减小体积,改善性能,降低成本。2.2.3 射频直接带通采样原理射频直接带通采样原理跟踪滤波跟踪滤波放大放大A/DDSP(软件)(软件)音频音频视频视频采样脉冲源(采样脉冲源(DDS)射频直接采样软件无线电接收体制射频直接采样软件无线电接收体制主要特点:主要特点:1)以上模型通常用于单独对一个信号进行接收)以上模型通常用于单独对一个信号进行接收解调的时候。解调的时候。2)天线与)天线与A/D之间比较接

14、近,只有跟踪滤波器和之间比较接近,只有跟踪滤波器和放大器。如果放大器。如果A/D灵敏度足够高,连放大器都可灵敏度足够高,连放大器都可以不要。因此这种结构和理想化的软件无线电是以不要。因此这种结构和理想化的软件无线电是比较接近的。比较接近的。3)存在)存在“盲区盲区”-完美只是一种理想完美只是一种理想2.2.4 采样的盲区采样的盲区在采样前和采样后一般需要对信号进行滤波:在采样前和采样后一般需要对信号进行滤波:在采样前滤波:保证只对感兴趣的信号进行采样,在采样前滤波:保证只对感兴趣的信号进行采样,滤出其他信号、干扰信号和噪声,保证信号噪声滤出其他信号、干扰信号和噪声,保证信号噪声比。比。在采样后

15、滤波:对于宽带信号的单个信道进行分在采样后滤波:对于宽带信号的单个信道进行分析时,必须首先拾取该信道的信号,就需要滤波析时,必须首先拾取该信道的信号,就需要滤波处理。处理。如何设计滤波器?滤波器对如何设计滤波器?滤波器对信号是否造成损失?如何对信号是否造成损失?如何对待过渡带信号?待过渡带信号?过渡带过渡带 在现实中,理想的滤波器(矩形系数为在现实中,理想的滤波器(矩形系数为1,带,带宽为宽为fs/2)是做不到的,在现实中能实现的滤波)是做不到的,在现实中能实现的滤波器(上图)存在器(上图)存在“盲区盲区”(阴影部分)。当信号(阴影部分)。当信号落在落在“盲区盲区”里面时,将被滤波器滤除,而无

16、法里面时,将被滤波器滤除,而无法对这些信号进行采样数字化(至少降低信号采样对这些信号进行采样数字化(至少降低信号采样灵敏度)。灵敏度)。能实现的滤波器能实现的滤波器解决方法:解决方法:对这些对这些“盲区盲区”通过选择适合的采样频率进通过选择适合的采样频率进行行“异频异频”或或“异速率异速率”采样。(见下图)采样。(见下图)根据带通采样定理,为了对中心频率为根据带通采样定理,为了对中心频率为fom的这一的这一“盲区盲区”频带进行采样数字化,所要求频带进行采样数字化,所要求的采样速率为:的采样速率为:(1)易知易知“盲区盲区”中心频率为:中心频率为:(2)将式将式2代入式代入式1,可得:,可得:(

17、3)在式在式3中,中,m取不同的值对应不同的取不同的值对应不同的“盲区盲区”,而,而n的选取应尽量使的选取应尽量使 fsm 靠近靠近 fs(但小于(但小于fs),以减),以减小采样振荡器的频率设置范围。所以可以取小采样振荡器的频率设置范围。所以可以取n m1,这时有:,这时有:(4)“盲区盲区”采样频率确定后,并不意味着就能实现采样频率确定后,并不意味着就能实现无无“盲区盲区”采样,还必须对滤波器的特性(矩形采样,还必须对滤波器的特性(矩形系数系数r)提出一定要求,否则采样)提出一定要求,否则采样“盲区盲区”可能仍可能仍然无法消除。然无法消除。下面给出下面给出“盲区盲区”采样的滤波矩形系数采样

18、的滤波矩形系数 rm 与主采与主采样的滤波矩形系数样的滤波矩形系数 r 的关系:的关系:2.3 软件无线电的理论基础软件无线电的理论基础 多速率信号处理多速率信号处理 经过前面的介绍,我们知道:经过前面的介绍,我们知道:1)宽带带通采样是比较接近软件无线电思想,要)宽带带通采样是比较接近软件无线电思想,要求的采样率要远大于单个信道的带宽要求求的采样率要远大于单个信道的带宽要求 2)在尽可能的情况下,带通采样速率应该尽可能)在尽可能的情况下,带通采样速率应该尽可能的高一些,这样也有助于改善信噪比。但是高采的高一些,这样也有助于改善信噪比。但是高采样率带来了高数据流速率,导致后续信号处理的样率带来

19、了高数据流速率,导致后续信号处理的问题。本节介绍的,就是如何降低问题。本节介绍的,就是如何降低 A/D 后的数据后的数据流速率流速率变采样率的信号处理技术变采样率的信号处理技术2.3.1 整数倍抽取整数倍抽取所谓整数倍抽取是指把原始采样序列所谓整数倍抽取是指把原始采样序列 x(n)每隔每隔(D-1)个数据取一个,以形成一个新序列个数据取一个,以形成一个新序列xD(m),即:即:xD(m)=x(mD)式中,式中,D为正整数。抽取过程及抽取器符号见下为正整数。抽取过程及抽取器符号见下图。图。DX(n)XD(m)抽取器的符号表示抽取器的符号表示整数倍抽取整数倍抽取直接抽取数据,行吗?直接抽取数据,行

20、吗?口说无凭,公式证明!口说无凭,公式证明!定义一个新信号:定义一个新信号:根据恒等式:根据恒等式:则则x(n)可以表示为:可以表示为:由于由于 xD(m)=x(Dm)=x(Dm),对,对 xD(m)进行进行Z变换,变换,可得:可得:把把 x(mx(m)的表达式以及的表达式以及 带入上式,得:带入上式,得:由上式可见,抽取序列的频谱为抽取前后原始序由上式可见,抽取序列的频谱为抽取前后原始序列之频谱经频移和列之频谱经频移和 D 倍展宽后的倍展宽后的 D 个频谱的叠加个频谱的叠加和,因此可能存在混迭。和,因此可能存在混迭。直接抽取序列,频谱产生混叠直接抽取序列,频谱产生混叠预滤波预滤波 解决混叠的

21、良药!解决混叠的良药!由上图可见,抽取后的频谱产生了严重的混由上图可见,抽取后的频谱产生了严重的混 叠,使得从叠,使得从 中已经无法恢复出我们所感兴中已经无法恢复出我们所感兴 趣的信号频谱分量。但是,如果首先采用一数字趣的信号频谱分量。但是,如果首先采用一数字 滤波器对滤波器对 进行滤波,使进行滤波,使 中只含有小中只含有小于于 pi/D 的频率分量(对应模拟频率为的频率分量(对应模拟频率为pifs/D),),再进行再进行D倍抽取,则抽取后的频谱就不会发生混倍抽取,则抽取后的频谱就不会发生混叠。叠。滤波后抽取序列,频谱不会混叠滤波后抽取序列,频谱不会混叠 经过抽取,数据流数率只有以前的经过抽取

22、,数据流数率只有以前的1/D,大大降低了对后续处理(解调分析,大大降低了对后续处理(解调分析等)的速度要求。等)的速度要求。D完整的抽取器方框图完整的抽取器方框图2.3.2 整数倍内插整数倍内插 所谓整数倍内插就是指在两个原始采样点之所谓整数倍内插就是指在两个原始采样点之间插入(间插入(I1)个零值,若设原始抽样序列为)个零值,若设原始抽样序列为x(n),则内插后的序列,则内插后的序列 xI(m)为:为:内插过程如图所示:内插过程如图所示:整数倍内插整数倍内插内插内插滤波滤波抽取导致频谱扩散,内插呢?抽取导致频谱扩散,内插呢?内插内插(I=2)前后的频谱结构图前后的频谱结构图 从上图很容易看出

23、,内插后的信号频谱相当从上图很容易看出,内插后的信号频谱相当于原始信号经过于原始信号经过I倍压缩后得到的谱。并且在未经倍压缩后得到的谱。并且在未经滤波前,频谱除了含有基带分量外,还含有原始滤波前,频谱除了含有基带分量外,还含有原始信号的高频成分。因此,为了能恢复原始信号,信号的高频成分。因此,为了能恢复原始信号,内插后通常要进行低通滤波。内插后通常要进行低通滤波。I I完整的内插器方框图完整的内插器方框图如果说抽取提高了频域如果说抽取提高了频域 分辨率,那么内插则是分辨率,那么内插则是提高了时域分辨率。提高了时域分辨率。2.3.3 取样的分数倍变换取样的分数倍变换 前面讨论的整数倍抽取和内插实

24、际上是取样率前面讨论的整数倍抽取和内插实际上是取样率变换的一种特殊情况,即:整数倍变换的情况。变换的一种特殊情况,即:整数倍变换的情况。然而在实际中往往会遇到非整数倍变换的情况。然而在实际中往往会遇到非整数倍变换的情况。假如分数倍变换的变换比为:假如分数倍变换的变换比为:R=D/I,怎么办怎么办?先内插,再抽取?先内插,再抽取?先抽取,再内插?先抽取,再内插?二者皆可?二者皆可?一定要先内插!一定要先内插!IDx(n)y(m)S(k)x(n)y(m)ID取样率的分数倍变换取样率的分数倍变换从频域上不难理解到,如果先进行抽取,要么会从频域上不难理解到,如果先进行抽取,要么会引起混叠,使信号失真,

25、要么是放弃一部分信号引起混叠,使信号失真,要么是放弃一部分信号分量,也会引起信号失真!分量,也会引起信号失真!2.3.4 取样率变换的性质取样率变换的性质经过前面的分析,我们很容易得出内插及抽取经过前面的分析,我们很容易得出内插及抽取的特性,如下图所示:的特性,如下图所示:DDDDDDDDDDx(n)x(n)x(n)x(n)x(n)x(n)x(n)x(n)y(m)y(m)y(m)y(m)y(m)y(m)y(m)y(m)抽取器的抽取器的对等关系对等关系IIII DI=DDIIIIIII=D内插器的内插器的对等关系对等关系ID=IDI=DD1D2D3I1I2I3x(n)x(n)x(n)x(n)x(

26、n)x(n)x(n)x(n)y(m)y(m)y(m)y(m)y(m)y(m)y(m)y(m)D3=D1D2I3=I1I2抽取内插级联系统抽取内插级联系统的对等关系的对等关系2.3.5 抽取内插器的实时滤波结构抽取内插器的实时滤波结构 多相滤波结构多相滤波结构 前面所讨论的,无论是抽取还是内插,对系前面所讨论的,无论是抽取还是内插,对系统运算速度的要求是相当高的。主要表现在抽取统运算速度的要求是相当高的。主要表现在抽取器模型中,低通滤波器位于抽取因子之前(即器模型中,低通滤波器位于抽取因子之前(即LPF是在降速之前实现的),而在内插器模型中,是在降速之前实现的),而在内插器模型中,LPF是在内插

27、因子之后(是在内插因子之后(LPF在提速之后进行)。在提速之后进行)。由此可见,无论抽取还是内插,数字滤波器由此可见,无论抽取还是内插,数字滤波器的运算速度要求是相当高的。面临这种情况,我的运算速度要求是相当高的。面临这种情况,我们采用多相滤波结构来解决。们采用多相滤波结构来解决。直接运算量很大且浪费:直接运算量很大且浪费:D完整的抽取器方框图完整的抽取器方框图I I完整的内插器方框图完整的内插器方框图设数字滤波器的冲击响应为设数字滤波器的冲击响应为 h(n),则其则其 Z 变换变换定义为:定义为:将式子展开整理可重写为:将式子展开整理可重写为:令:令:得:得:数字滤波器的多相结构(抽取)Dx

28、(n)y(n)得到数得到数字滤波字滤波器的多器的多相滤波相滤波结构。结构。(适合(适合于抽取于抽取器模型)器模型)。其图。其图示如右:示如右:再根据抽取器的等效关系,我们不难得到抽取器再根据抽取器的等效关系,我们不难得到抽取器的多相滤波结构:的多相滤波结构:Dx(n)y(n)DD抽取抽取器的器的多相多相滤波滤波结构结构同理,我们可以得出适合于内插器的多相滤波结同理,我们可以得出适合于内插器的多相滤波结构的另一种表达式:构的另一种表达式:根据表达式,我们可以画出适合内插的数字根据表达式,我们可以画出适合内插的数字滤波器的结构框图。滤波器的结构框图。Ix(n)y(m)数字数字滤波滤波器的器的多相多

29、相结构结构根据内插器的等效关系,我们可以得到内插器的根据内插器的等效关系,我们可以得到内插器的多相滤波结构,如下图:多相滤波结构,如下图:Ix(n)y(m)I I举例:举例:设输入采样率为设输入采样率为fs100MSa/S,最终数据流,最终数据流250KSa/S,抽取倍数为,抽取倍数为400,信号带宽为,信号带宽为100KHz。此时设计抽取滤波器:要求阻带衰减小于此时设计抽取滤波器:要求阻带衰减小于0.01,可计算滤波器的阶数为可计算滤波器的阶数为2233(见滤波器设计小节)(见滤波器设计小节)。分析直接计算和采用多相分解的运算量。分析直接计算和采用多相分解的运算量。解:解:直接计算:直接计算

30、:100 X 2233=223.3GIPS 需要约需要约200个个C6xxx的处理能力的处理能力 多相分解:多相分解:100 X 2233/400=0.557GIPS 只需要只需要1个个C6xxx的处理能力的处理能力2.3.6 取样率变换的多级实现取样率变换的多级实现问题延伸:问题延伸:设输入采样率为设输入采样率为fs100MSa/S,最,最终数据流终数据流250KSa/S,抽取倍数为,抽取倍数为400,信号带,信号带宽为宽为100KHz,要求阻带衰减小于,要求阻带衰减小于0.01,求用窗,求用窗函数法设计滤波器时滤波器的阶数?函数法设计滤波器时滤波器的阶数?解:解:由此可见,抽取和内插一次性

31、完成,表面看起由此可见,抽取和内插一次性完成,表面看起来简单,但实际实现的时候会碰到比较大的困来简单,但实际实现的时候会碰到比较大的困难。特别是滤波器的阶数问题!难。特别是滤波器的阶数问题!问题的解决:问题的解决:分级抽取(内插)分级抽取(内插)分分级级实现,每次实现,每次 抽取倍数为抽取倍数为20,信号带宽先降到,信号带宽先降到2MHz,再降到,再降到100KHz,同样要求阻带衰减小于,同样要求阻带衰减小于0.01,可计算用窗函数法设计滤波器时滤波器的,可计算用窗函数法设计滤波器时滤波器的阶数:阶数:分级实现分级实现 具体方法见下图:具体方法见下图:内插的多级实现也是同一个道理!内插的多级实

32、现也是同一个道理!h(n)Dx(n)y(m)单级实现单级实现h1(n)D1x(n)h2(n)D2y(m)多级实现多级实现 D=D1D22.3.7 带通信号的取样率变换带通信号的取样率变换自学自学 在前面的讨论中我们假设了信号是基带信号,在前面的讨论中我们假设了信号是基带信号,在实际中,我们所处理的信号通常是带通信号,在实际中,我们所处理的信号通常是带通信号,这时,我们需要其他的方法。这时,我们需要其他的方法。方法一:方法一:“整带整带”抽取抽取 所谓所谓“整带整带”抽取是指带通信号关系满足如下抽取是指带通信号关系满足如下关系时的抽取,即带通信号的最高和最低频率和关系时的抽取,即带通信号的最高和

33、最低频率和是信号带宽的整数倍。这时抽取倍数是信号带宽的整数倍。这时抽取倍数D应该满足:应该满足:缺点:缺点:1)和带通采样一样,只要滤波器不是理想)和带通采样一样,只要滤波器不是理想 的,抽取后就会存在的,抽取后就会存在“盲区盲区”2)“整带整带”抽取需要满足关系式:抽取需要满足关系式:这在很多场合是无法满足的。这在很多场合是无法满足的。所以,我们需要有其他的出路!所以,我们需要有其他的出路!方法二:频谱搬移方法二:频谱搬移正交抽取结构正交抽取结构 我们可以先把位于中心频率我们可以先把位于中心频率f0处的带通信号处的带通信号搬移到基带,然后利用低通信号的抽取方法进搬移到基带,然后利用低通信号的

34、抽取方法进行抽取。具体实现方法见下图:行抽取。具体实现方法见下图:h(n)Dh(n)Dx(n)尽管正交抽取解决了尽管正交抽取解决了“整带整带”抽取的抽取的“盲区盲区”问题,但其自身也有固有的缺陷。我们先来看问题,但其自身也有固有的缺陷。我们先来看看频谱示意图看频谱示意图 a)实带通信号实带通信号 b)带通信号的基带表示带通信号的基带表示从频谱图中可以看出,经过频移的信号频谱并不从频谱图中可以看出,经过频移的信号频谱并不是关于实轴对称的。在这种情况下,我们最后得是关于实轴对称的。在这种情况下,我们最后得到的信号并不是实信号而是复信号,这在一些场到的信号并不是实信号而是复信号,这在一些场合下是不希

35、望的。合下是不希望的。为了解决这个问题,我们采用为了解决这个问题,我们采用边带调制技术边带调制技术,以,以实现带通信号的实抽取。实现带通信号的实抽取。从频谱上看,这种技术的原理是这样的:从频谱上看,这种技术的原理是这样的:带通信号的实抽取过程带通信号的实抽取过程h(n)h(n)x(n)y0(n)带通信号的频谱搬移过程带通信号的频谱搬移过程带通信号的实抽取结构带通信号的实抽取结构h(n)h(n)x(n)DD2.4 软件无线电的高效数字滤波软件无线电的高效数字滤波 通过前面的讨论可知,无论抽取还是内插,通过前面的讨论可知,无论抽取还是内插,都离不开数字滤波器,该滤波器性能的好坏将都离不开数字滤波器

36、,该滤波器性能的好坏将直接影响取样率变换的效果及其实时处理能力。直接影响取样率变换的效果及其实时处理能力。因此,滤波器的设计也是软件无线电中不可忽因此,滤波器的设计也是软件无线电中不可忽略的问题。略的问题。2.4.1 数字滤波器设计的理论基础数字滤波器设计的理论基础数字滤波器的数学表达式:数字滤波器的数学表达式:y(n)=h(k)x(n-k)=h(n)*x(n)*为卷积符号为卷积符号数字滤波器可以用两种形式来实现,即有限冲数字滤波器可以用两种形式来实现,即有限冲击响应滤波器击响应滤波器FIR和无限冲击响应滤波和无限冲击响应滤波IIR。FIR滤波器相对于滤波器相对于IIR滤波器有很多特点,滤波器

37、有很多特点,如如:线性相位,稳定性等等。并且线性相位,稳定性等等。并且FIR的设的设 计相对成熟。计相对成熟。本小节重点介绍本小节重点介绍FIR滤波器设计技术!滤波器设计技术!所谓的数字滤波器设计,就是在给定所谓的数字滤波器设计,就是在给定 (或给定(或给定 的某些特征参数)的条件的某些特征参数)的条件 下,求出冲激函数下,求出冲激函数h(n)。一般滤波器参数说明:一般滤波器参数说明:1、FIR滤波器的滤波器的窗函数设计法窗函数设计法所谓窗函数法就是用一个已知的窗函数所谓窗函数法就是用一个已知的窗函数 w(k)去去截取一个理想滤波器的冲激函数,得到一个实际截取一个理想滤波器的冲激函数,得到一个

38、实际可用的可用的FIR滤波器冲激函数滤波器冲激函数 h(k)。常用的窗有矩形窗,汉宁窗,海明窗,布哈窗常用的窗有矩形窗,汉宁窗,海明窗,布哈窗以及凯撒窗等。以及凯撒窗等。1)矩形窗:)矩形窗:2)海明窗:)海明窗:3)布哈窗:)布哈窗:4)凯撒窗:)凯撒窗:讨论:讨论:理想滤波器冲击响应理想滤波器冲击响应 h id(n)的设计的设计=(N-1)/2(N-1)n窗函数的取值范围通常是窗函数的取值范围通常是0,N-1,而理想滤波,而理想滤波器冲击响应器冲击响应 hid(n)的取值范围通常是的取值范围通常是-N/2,N/2,因此,在两个函数相乘以前要先将,因此,在两个函数相乘以前要先将 hid(n)

39、移至移至N/2处。(在频域上表现为增加一个固定相移)处。(在频域上表现为增加一个固定相移)对某些类型的窗,给定对某些类型的窗,给定 p(通带波动)(通带波动)s(阻带(阻带衰减)衰减)Fc(截止频率)和(截止频率)和Fa(阻带起始频率)等(阻带起始频率)等参数就能够确定滤波器的阶数参数就能够确定滤波器的阶数N。如凯撒窗:。如凯撒窗:2、最佳滤波器设计、最佳滤波器设计所谓最佳是指滤波器的频率响应所谓最佳是指滤波器的频率响应 在所感兴趣在所感兴趣的频率范围内与理想滤波器的频率响应的频率范围内与理想滤波器的频率响应 之间之间的的最大逼近误差最小最大逼近误差最小。“最大最小最大最小”由切比雪夫准则定义

40、。由切比雪夫准则定义。其中,加权误差函数定义为:其中,加权误差函数定义为:最佳滤波器设计主要借助各种工具和计算机程序最佳滤波器设计主要借助各种工具和计算机程序来分析完成,在早期的来分析完成,在早期的MATLAB里面,里面,REMEZ 用于最佳滤波器的设计,用于最佳滤波器的设计,REMEZORD用于计算用于计算所需的滤波器的阶数,现在使用所需的滤波器的阶数,现在使用FIRPM和和FIRPMORD函数。函数。已知:已知:p、s、fs、f=fc,fa、a=1,0 dev=(10(p/20)-1)/10(rp/20)+1 10(-s/20)n,f0,a0,w=firpmord(f,a,dev,fs)B

41、=firpm(n,f0,a0,w)得到滤波器系数。得到滤波器系数。所谓半带滤波器,是指其频率响应所谓半带滤波器,是指其频率响应 满足以满足以下关系的下关系的FIR滤波器:滤波器:即:阻带和通带相等,阻带和即:阻带和通带相等,阻带和 通带波动相同。通带波动相同。其频谱如下:其频谱如下:2.4.2 适合于适合于D=2M 倍抽取或内插的半带倍抽取或内插的半带 滤波器滤波器11/20半带滤波器半带滤波器不难证明,半带滤波器有如下性质:不难证明,半带滤波器有如下性质:为什么半带滤波器适合于为什么半带滤波器适合于D=2M内插或抽取内插或抽取?适合的关键是要我们所关心的信号能在滤波适合的关键是要我们所关心的

42、信号能在滤波后恢复,半带滤波器能办到吗?后恢复,半带滤波器能办到吗?半带滤波器用作二倍抽取器时的混叠半带滤波器用作二倍抽取器时的混叠情况情况 从上图可以看到,尽管抽取使得频谱扩展,造从上图可以看到,尽管抽取使得频谱扩展,造成了混叠,但是其通带内的信号并没有失真。也就成了混叠,但是其通带内的信号并没有失真。也就是说,我们所关心的信号部分仍然有效。是说,我们所关心的信号部分仍然有效。对于内插,也是一个道理,至于对于内插,也是一个道理,至于 的抽取和的抽取和内插,只需多级级联即可实现!内插,只需多级级联即可实现!举例:举例:从前面分析可知:半带滤波器的设计只要是从前面分析可知:半带滤波器的设计只要是

43、设计奇数序号的系数,满足特定滤波器指标,可设计奇数序号的系数,满足特定滤波器指标,可以借助各种工具完成。这儿距离给出以借助各种工具完成。这儿距离给出HSP50214的的7阶半带滤波器的系数:阶半带滤波器的系数:2.4.3 积分梳状(积分梳状(CIC)滤波器)滤波器 前面讲的半带滤波器,只适合与前面讲的半带滤波器,只适合与D为为2的幂次的幂次方时的抽取,但是,实际的抽取系统中抽取系数方时的抽取,但是,实际的抽取系统中抽取系数D往往不是往往不是2的幂次倍,这时候怎么办呢?的幂次倍,这时候怎么办呢?采用采用 积分梳状滤波器!积分梳状滤波器!所谓积分梳状滤波器,是指该滤波器的冲激响应所谓积分梳状滤波器

44、,是指该滤波器的冲激响应具有如下形式:具有如下形式:根据根据Z变换的定义,变换的定义,CIC滤波器的滤波器的Z变换为:变换为:Dx(n)y(m)积分梳状滤波器的实现:积分梳状滤波器的实现:H1为一个积分器,为一个积分器,H2的频率响应象一把梳子,故把它形象的称为梳状的频率响应象一把梳子,故把它形象的称为梳状滤波器。滤波器。同理:同理:Dx(n)y(m)为了提高处理速度,进行变换:为了提高处理速度,进行变换:注意:注意:1)单级)单级CIC的旁瓣电平比较大,只比主瓣电平低的旁瓣电平比较大,只比主瓣电平低13.46dB,这就意味着衰减很差。为了降低旁瓣,这就意味着衰减很差。为了降低旁瓣电平,常常采

45、用多级电平,常常采用多级CIC级联的方法来解决。级联的方法来解决。2)Q级级联的级级联的CIC其频率响应有一个处理增益其频率响应有一个处理增益 DQ,而且随着级联级数,而且随着级联级数Q和抽取因子和抽取因子D的增加而的增加而增大。所以,每一级必须保留足够的运算精度,增大。所以,每一级必须保留足够的运算精度,以免引起溢出错误。以免引起溢出错误。3)CIC滤波器并非不产生混叠,只是在其旁瓣衰滤波器并非不产生混叠,只是在其旁瓣衰减很大,而采样带宽很窄的情况下,可以忽略这减很大,而采样带宽很窄的情况下,可以忽略这种混叠(略)。种混叠(略)。2.5 软件无线电种的数字信号软件无线电种的数字信号 正交变换

46、理论正交变换理论 我们知道,现实中产生的物理可实现的信号是我们知道,现实中产生的物理可实现的信号是实信号,但本章却提出要将实信号正交分解为复信实信号,但本章却提出要将实信号正交分解为复信号,为什么要进行正交分解?直接利用现实中的信号,为什么要进行正交分解?直接利用现实中的信号不行吗?号不行吗?设有一个实信号设有一个实信号x(t),其正交分解后的复信号,其正交分解后的复信号 为为z(t),该信号的极坐标表示为:,该信号的极坐标表示为:从这个表达式中,我们很容易得到信号的:从这个表达式中,我们很容易得到信号的:瞬时包络瞬时包络 瞬时相位瞬时相位 瞬时频率瞬时频率 而这三个参数,恰好是信号分析,参数

47、测量和而这三个参数,恰好是信号分析,参数测量和识别调制的基础。这就是对实信号进行解析表示的识别调制的基础。这就是对实信号进行解析表示的意义所在。意义所在。通过上面的介绍,我们知道了为什么要将信号进通过上面的介绍,我们知道了为什么要将信号进行正交解析表示。可是,怎样对信号进行正交表行正交解析表示。可是,怎样对信号进行正交表示呢?示呢?我们知道,一个实信号的频谱具有共轭对称我们知道,一个实信号的频谱具有共轭对称性。所以,对于一个实信号,只要取其正频域部性。所以,对于一个实信号,只要取其正频域部分或者负频域部分就能完全加以描述,而不会丢分或者负频域部分就能完全加以描述,而不会丢失任何信息!并且,所得

48、的新信号是一个复信号!失任何信息!并且,所得的新信号是一个复信号!我们是否可以从这方面下手呢?我们是否可以从这方面下手呢?假设有一个信号假设有一个信号x(t),取其正频域部分的频谱分,取其正频域部分的频谱分量,这部分频谱可以用一个复函数量,这部分频谱可以用一个复函数z(t)来表示。则:来表示。则:(f 0 的分量加倍是为了使的分量加倍是为了使 z(t)与原信号能量相与原信号能量相等)。等)。再引入一个阶跃滤波器:再引入一个阶跃滤波器:这样,我们可以得到:这样,我们可以得到:易于求出易于求出 我们把我们把 x(t)*h(t)叫做叫做 x(t)的的 Hilbert 变换变换。我们可以发现,一个实数

49、的我们可以发现,一个实数的 Hilbert 变换是一变换是一个复数,且同原信号正交。所以,一个实信号要个复数,且同原信号正交。所以,一个实信号要进行正交分解,只需要:进行正交分解,只需要:Hilbert变换x(t)xI(t)xQ(t)2.5.1 窄带信号的正交分解与模拟域实现窄带信号的正交分解与模拟域实现一个实的窄带信号可表示为:一个实的窄带信号可表示为:其其Hilbert 变换为:变换为:所以:所以:由于由于 w0(t)为载频分量,不包含有用信息,故可为载频分量,不包含有用信息,故可简化表达式为:简化表达式为:为了得到为了得到 ZB,我们可以这样:,我们可以这样:LPFLPFx(t)实信号的

50、正交基带变换实信号的正交基带变换2.5.2 数字混频正交实现数字混频正交实现所谓的数字混频实际上就是先将模拟信号进行数所谓的数字混频实际上就是先将模拟信号进行数字化,再进行正交分解。如图:字化,再进行正交分解。如图:LPFLPFx(n)A/Dx(t)有时称为正交有时称为正交采样处理采样处理2.5.3 基于多相滤波的数字正交变换基于多相滤波的数字正交变换设输入信号为:设输入信号为:以采样率以采样率 fs 进行采样:进行采样:所得的采样序列为:所得的采样序列为:从上式可得:从上式可得:令:令:则:则:也就是说,也就是说,和和 分别是同相分量分别是同相分量xBI(n)和正交分量和正交分量 xBQ(n

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁