《人教版高中数学 3.1回归分析的基本思想及其初步应用课件 新人教A选修23.ppt》由会员分享,可在线阅读,更多相关《人教版高中数学 3.1回归分析的基本思想及其初步应用课件 新人教A选修23.ppt(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、3.1回归分析的基本思想及其回归分析的基本思想及其初步应用初步应用高二数学高二数学 选修选修2-32021/8/9 星期一1 比数学3中“回归”增加的内容数学数学统计统计1.画散点图画散点图2.了解最小二乘法的思想了解最小二乘法的思想3.求回归直线方程求回归直线方程ybxa4.用回归直线方程解决应用问用回归直线方程解决应用问题题选修2-3统计案例5.引入线性回归模型引入线性回归模型ybxae6.了解模型中随机误差项了解模型中随机误差项e产生的原因产生的原因7.了解残差图的作用了解残差图的作用8.了解相关指数了解相关指数 R2 和模型拟合的效果之间的和模型拟合的效果之间的关系关系9.利用线性回归
2、模型解决一类非线性回归问题利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果正确理解分析方法与结果2021/8/9 星期一2回归分析的内容:回归分析的内容:数学3中,已对具有相关关系的变量利用回归分析的方法进行了研究,其步骤为画散点图,求回归直线方程,并用回归直线方程进行预报。回归分析对具有相关关系的两个变量进行统计分析的一种常用的方法,回归分析对具有相关关系的两个变量进行统计分析的一种常用的方法,也就是通过一个变量或一些变量的变化解释另一变量的变化。也就是通过一个变量或一些变量的变化解释另一变量的变化。2021/8/9 星期一3最小二乘法:最小二乘法:称为样本点的中心称为样本
3、点的中心。回归直线过样本点中心回归直线过样本点中心2021/8/9 星期一4例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x
4、,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。因此可以用线性回归方程刻画它们之间的关系。分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量重为因变量2021/8/9 星期一52.2.回归方程:回归方程:1.散点图;散点图;2021/8/9 星期一6探究:探究:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗吗?如果不是,你能解析一
5、下原因吗?如果不是,你能解析一下原因吗?答:身高为答:身高为172cm的女大学生的体重不一定是的女大学生的体重不一定是60.316kg,但一般可以认为她的体重接近于,但一般可以认为她的体重接近于60.316kg。即,用这个回归方程不能给出每个身高为即,用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平均的女大学生的体重的预测值,只能给出她们平均体重的值。体重的值。2021/8/9 星期一7例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165157
6、170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。回归方程刻画它们之间的关系。3、从散点图还看
7、到,样本点散布在、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条某一条直线的附近,而不是在一条直线上,所以不能用一次函数直线上,所以不能用一次函数y=bx+a描述它们关系。描述它们关系。2021/8/9 星期一8函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:线性回归模型:当随机误差恒等于当随机误差恒等于0时,时,线性回归模型就变为函数模型线性回归模型就变为函数模型2021/8/9 星期一9函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:回归模型:线性回归模型线性回归模型y=bx+a+e增加了随机误差项增加了随机误差项e,因变量,因变量y的值由自
8、变量的值由自变量x和和随机误差项随机误差项e共同确定,即共同确定,即自变量自变量x只能解析部分只能解析部分y的变化的变化。在统计中,我们也把自变量在统计中,我们也把自变量x称为解析变量,因变量称为解析变量,因变量y称为预报变量。称为预报变量。2021/8/9 星期一10我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e,(3)其中其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。y=bx+a+e,E(e)=0,D(e)=(4)在线性回归模型在线性回归模型(4)中,随机误差中,随机误差e的方差的方差 越小,通过回归直线越小,通过回归
9、直线 (5)预报真实值预报真实值y的精度越高。随机误差是引起预报值的精度越高。随机误差是引起预报值 与真实值与真实值y之间的误差之间的误差的原因之一,其大小取决于随机误差的方差。的原因之一,其大小取决于随机误差的方差。另一方面,由于公式另一方面,由于公式(1)和和(2)中中 和和 为截距和斜率的估计值,它们与真实为截距和斜率的估计值,它们与真实值值a和和b之间也存在误差,这种误差是引起预报值与真实值之间也存在误差,这种误差是引起预报值与真实值y之间误差的另一之间误差的另一个原因。个原因。2021/8/9 星期一11思考思考:产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差随机
10、误差e e的来源的来源(可以推广到一般):可以推广到一般):1、用线性回归模型近似真实模型所引起的误差;用线性回归模型近似真实模型所引起的误差;2、忽略了其它因素的影响:影响身高忽略了其它因素的影响:影响身高 y 的因素不只是体重的因素不只是体重 x,可能还包括遗传,可能还包括遗传基因、饮食习惯、生长环境等因素;基因、饮食习惯、生长环境等因素;3、身高、身高 y 的观测误差。的观测误差。以上三项误差越小,说明我们的回归模型的拟合效果越好。以上三项误差越小,说明我们的回归模型的拟合效果越好。2021/8/9 星期一12探究探究:e 是是 用预报真实值用预报真实值Y的随机误差,它是一个不可观测的量
11、,那么怎样研究随机误差呢的随机误差,它是一个不可观测的量,那么怎样研究随机误差呢?回归模型:其估计值为其估计值为而言,它们的随机误差而言,它们的随机误差对于样本点对于样本点2021/8/9 星期一13表表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。列出了女大学生身高和体重的原始数据以及相应的残差数据。在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。是否可以用回归模型来拟合数据。残差分析与残差图的定义:残差分析与残差图的定义:然后,我们可以通过残差然后,我们可
12、以通过残差 来判断模型拟合的效果,判断原始来判断模型拟合的效果,判断原始数据中是否存在可疑数据,数据中是否存在可疑数据,这方面的分析工作称为残差分析这方面的分析工作称为残差分析。编号编号12345678身高身高/cm165165157170175165155170体重体重/kg4857505464614359残差残差-6.3732.6272.419-4.6181.1376.627-2.8830.382 我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为编
13、号,或身高数据,或体重估计值等,这样作出的图形称为残差图残差图。2021/8/9 星期一14残差图的制作及作用。残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;对于远离横轴的点,要特别注意对于远离横轴的点,要特别注意。身高与体重残差图异常点 错误数据 模型问题 几点说明:几点说明:第一个样本点和第第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠个样本点的残差比较
14、大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。精度越高,回归方程的预报精度越高。2021/8/9 星期一15显然,显然,R2的值越大,说明残差平方和越小,也就是说
15、模型拟合效果越好。的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。表示解析变量对预报变量变化的贡献率。R2越接近越接近1,表示回归的效果越好(因为,表示回归的效果越好(因为R2越接近越接近1,表示解析变量和预报变量的,表示解析变量和预报变量的线性相关性越强)线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值的值来做出选择,即选取来做出选择,即选取R2较大的模型作为这组数据的模型。较大的模型作为这组数据的模型。
16、总的来说:总的来说:相关指数相关指数R2是度量模型拟合效果的一种指标。是度量模型拟合效果的一种指标。在线性模型中,它在线性模型中,它代表自变量刻画预报变量的能力代表自变量刻画预报变量的能力。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是2021/8/9 星期一161354总计0.36128.361残差变量0.64225.639随机误差比例平方和来源表表1-3 从表从表3-1中可以看出,解析变量对总效应约贡献了中可以看出,解析变量对总效应约贡献了64%,即,即R2 0.64,可以叙述为,可以叙述为“身高解析了身高解析了64%的体重变化的体重变
17、化”,而随机误差贡献了剩余的,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。所以,身高对体重的效应比随机误差的效应大得多。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是2021/8/9 星期一17用身高预报体重时,需要注意下列问题:用身高预报体重时,需要注意下列问题:1、回归方程只适用于我们所研究的样本的总体;、回归方程只适用于我们所研究的样本的总体;2、我们所建立的回归方程一般都有时间性;、我们所建立的回归方程一般都有时间性;3、样本采集的范围会影响回归方程的适用范围;、样本采集的范围会影响回归方程的适用范围
18、;4、不能期望回归方程得到的预报值就是预报变量的精确值。、不能期望回归方程得到的预报值就是预报变量的精确值。事实上,它是预报变量的可能取值的平均值。事实上,它是预报变量的可能取值的平均值。这些问题也使用于其他问题。这些问题也使用于其他问题。涉及到统计的一些思想:涉及到统计的一些思想:模型适用的总体;模型适用的总体;模型的时间性;模型的时间性;样本的取值范围对模型的影响;样本的取值范围对模型的影响;模型预报结果的正确理解。模型预报结果的正确理解。小结小结2021/8/9 星期一18一般地,建立回归模型的基本步骤为:一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个
19、变量是预报变量。)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系 (如是否存在线性关系等)。(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不)
20、得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。2021/8/9 星期一19什么是回归分析?什么是回归分析?(内容)(内容)(内容)(内容)1.1.从一组样本数据出发,确定变量之间的数学关系式从一组样本数据出发,确定变量之间的数学关系式从一组样本数据出发,确定变量之间的数学关系式从一组样本数据出发,确定变量之间的数学关系式2.2.对对对对这这这这些些些些关关关关系系系系式式式式的的的的可可可可信信信信程程程程度度度度进进进进行行行行各
21、各各各种种种种统统统统计计计计检检检检验验验验,并并并并从从从从影影影影响响响响某某某某一一一一特特特特定定定定变变变变量量量量的的的的诸诸诸诸多变量中找出哪些变量的影响显著,哪些不显著多变量中找出哪些变量的影响显著,哪些不显著多变量中找出哪些变量的影响显著,哪些不显著多变量中找出哪些变量的影响显著,哪些不显著3.3.利利利利用用用用所所所所求求求求的的的的关关关关系系系系式式式式,根根根根据据据据一一一一个个个个或或或或几几几几个个个个变变变变量量量量的的的的取取取取值值值值来来来来预预预预测测测测或或或或控控控控制制制制另另另另一一一一个个个个特特特特定定定定变量的取值,并给出这种预测或控
22、制的精确程度变量的取值,并给出这种预测或控制的精确程度变量的取值,并给出这种预测或控制的精确程度变量的取值,并给出这种预测或控制的精确程度2021/8/9 星期一20回归分析与相关分析的区别回归分析与相关分析的区别1.1.相相相相关关关关分分分分析析析析中中中中,变变变变量量量量 x x 变变变变量量量量 y y 处处处处于于于于平平平平等等等等的的的的地地地地位位位位;回回回回归归归归分分分分析析析析中中中中,变变变变量量量量 y y 称称称称为为为为因因因因变量,处在被解释的地位,变量,处在被解释的地位,变量,处在被解释的地位,变量,处在被解释的地位,x x 称为自变量,用于预测因变量的变
23、化称为自变量,用于预测因变量的变化称为自变量,用于预测因变量的变化称为自变量,用于预测因变量的变化2.2.相相相相关关关关分分分分析析析析中中中中所所所所涉涉涉涉及及及及的的的的变变变变量量量量 x x 和和和和 y y 都都都都是是是是随随随随机机机机变变变变量量量量;回回回回归归归归分分分分析析析析中中中中,因因因因变变变变量量量量 y y 是是是是随机变量,自变量随机变量,自变量随机变量,自变量随机变量,自变量 x x 可以是随机变量,也可以是非随机的确定变量可以是随机变量,也可以是非随机的确定变量可以是随机变量,也可以是非随机的确定变量可以是随机变量,也可以是非随机的确定变量3.3.相
24、相相相关关关关分分分分析析析析主主主主要要要要是是是是描描描描述述述述两两两两个个个个变变变变量量量量之之之之间间间间线线线线性性性性关关关关系系系系的的的的密密密密切切切切程程程程度度度度;回回回回归归归归分分分分析析析析不不不不仅仅仅仅可可可可以揭示变量以揭示变量以揭示变量以揭示变量 x x 对变量对变量对变量对变量 y y 的影响大小,还可以由回归方程进行预测和控制的影响大小,还可以由回归方程进行预测和控制的影响大小,还可以由回归方程进行预测和控制的影响大小,还可以由回归方程进行预测和控制 2021/8/9 星期一21相关系数相关系数n 1.1.计算公式计算公式n2 2相关系数的性质相关
25、系数的性质n(1)|r|1(1)|r|1n(2)|r|(2)|r|越接近于越接近于1 1,相关程度越大;,相关程度越大;|r|r|越接近于越接近于0 0,相关程度越小,相关程度越小n问题:达到怎样程度,问题:达到怎样程度,x x、y y线性相关呢?它们的相关程度怎样呢?线性相关呢?它们的相关程度怎样呢?2021/8/9 星期一22负相关负相关正相关正相关2021/8/9 星期一23相关系数相关系数正相关;负相关通常,正相关;负相关通常,r r-1,-0.75-0.75-负相关很强负相关很强;r0.75,1正相关很强正相关很强;r-0.75,-0.3-负相关一般负相关一般;r0.3,0.75正相
26、关一般正相关一般;r r-0.25,0.25-0.25-相关性较弱相关性较弱;2021/8/9 星期一24例例2:一只红铃虫的产卵数一只红铃虫的产卵数y与温度与温度x有关有关,现收集了现收集了7组观测数据组观测数据,试建立试建立y与与x之之间的回归方程间的回归方程 解解:1):1)作散点图作散点图;从从散散点点图图中中可可以以看看出出产产卵卵数数和和温温度度之之间间的的关关系系并并不不能能用用线线性性回回归归模模型型来来很很好好地地近近似似。这些散点更像是集中在一条指数曲线或二次曲线的附近。这些散点更像是集中在一条指数曲线或二次曲线的附近。2021/8/9 星期一25解解:令令 则则z=bx+
27、a,(a=lncz=bx+a,(a=lnc1 1,b=c,b=c2 2),),列出变换后数据表并画列出变换后数据表并画 出出x x与与z z 的散点图的散点图 x和z之间的关系可以用线性回归模型来拟合x x2121232325252727292932323535z z1.9461.9462.3982.3983.0453.0453.1783.1784.194.194.7454.7455.7845.7842021/8/9 星期一262)2)用用 y=cy=c3 3x x2 2+c+c4 4 模型模型,令令 ,则则y=cy=c3 3t+ct+c4 4,列出变换列出变换后数据表并画出后数据表并画出t
28、t与与y y 的散点图的散点图 散点并不集中在一条直线的附近,因此用线散点并不集中在一条直线的附近,因此用线性回归模型拟合他们的效果不是最好的。性回归模型拟合他们的效果不是最好的。t t4414415295296256257297298418411024102412251225y y7 711112121242466661151153253252021/8/9 星期一27残残差差表表编号编号1 12 23 34 45 56 67 7x x2121232325252727292932323535y y7 71111212124246666115115325325e(1)e(1)0.520.52-
29、0.167-0.1671.761.76-9.149-9.1498.8898.889-14.153-14.15332.92832.928e(2)e(2)47.747.7 19.39719.397-5.835-5.835-41.003-41.003-40.107-40.107-58.268-58.26877.96577.965非线性回归方程非线性回归方程二次回归方程二次回归方程残差公式残差公式2021/8/9 星期一28 在此处可以引导学生体会应用统计方法解决实际问题在此处可以引导学生体会应用统计方法解决实际问题需要注意的问题:需要注意的问题:对于同样的数据,有不同的统对于同样的数据,有不同的统计方法进行分析,我们要用最有效的方法分析数计方法进行分析,我们要用最有效的方法分析数据。据。现在有三个不同的回归模型可供选择来拟合红铃虫的产卵数与温度数据,他们分别是:可以利用直观(散点图和残差图)、相关指数来确定哪一个模型的拟合效果更好。2021/8/9 星期一29对于给定的样本点对于给定的样本点,含有两个未知参数模型含有两个未知参数模型()()2021/8/9 星期一30