《向量数乘运算及其几何意义(上课优秀课件).ppt》由会员分享,可在线阅读,更多相关《向量数乘运算及其几何意义(上课优秀课件).ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.2.3 向量数乘运算及其几何意义下 页上 页首 页 小 结结 束知识回顾知识回顾BAbao.OO.C C C Ca+bbaABba+ba1.1.向量加法三角形法则向量加法三角形法则:2.2.向量加法平行四边形法则向量加法平行四边形法则:首尾相连首尾接起点相同连对角o.BAa-bab3.3.向量减法法则向量减法法则:共起点,连终点,共起点,连终点,方向指向被减数方向指向被减数-a-a-aPQMNaaaABCOa已知非零向量已知非零向量a a,作,作a+a+aa+a+a和和(-a)+(-a)+(-a)(-a)+(-a)+(-a)下 页上 页首 页 小 结结 束 当当当当0000时时时时,a,a
2、,a,a的方向与的方向与的方向与的方向与a a a a方向相同;方向相同;方向相同;方向相同;当当当当0000)(0)(0)(0)倍,即有倍,即有倍,即有倍,即有|b|=|a|,|b|=|a|,|b|=|a|,|b|=|a|,且且且且下 页上 页首 页 小 结结 束四、向量共线四、向量共线四、向量共线四、向量共线定理定理定理定理 向量向量向量向量b b b b与与与与非零向量非零向量非零向量非零向量a a a a共线共线共线共线当且仅当有唯一当且仅当有唯一当且仅当有唯一当且仅当有唯一一个实数一个实数一个实数一个实数,使得,使得,使得,使得 b=a.b=a.b=a.b=a.即:即:即:即:下 页
3、上 页首 页 小 结结 束解:作图如右解:作图如右解:作图如右解:作图如右OABC依图猜想依图猜想依图猜想依图猜想:A:A:A:A、B B B B、C C C C三点共线三点共线三点共线三点共线 A A A A、B B B B、C C C C三点共线三点共线三点共线三点共线.abbbba例例2 2、已知任意两非零向量、已知任意两非零向量a a、b b,试作试作 OA=a+b,OB=a+2b,OC=a+3bOA=a+b,OB=a+2b,OC=a+3b。你能判断你能判断A A、B B、C C三点之间的位置关系吗?为什么?三点之间的位置关系吗?为什么?AB=OB-OAAB=OB-OAAB=OB-OA
4、AB=OB-OA AC=2ABAC=2ABAC=2ABAC=2AB又又又又 AC=OC-OAAC=OC-OAAC=OC-OAAC=OC-OA =a+3b-(a+b)=2b=a+3b-(a+b)=2b=a+3b-(a+b)=2b=a+3b-(a+b)=2b =a+2b-(a+b)=b=a+2b-(a+b)=b=a+2b-(a+b)=b=a+2b-(a+b)=b又又又又 ABABABAB与与与与ACACACAC有公共点有公共点有公共点有公共点A A A A,下 页上 页首 页 小 结结 束AEDCB解:解:解:解:=3 AC=3 AC=3(AB+BC)=3(AB+BC)AB+BC=ACAB+BC=
5、AC =3 AB+3 BC=3 AB+3 BC又又 AE=AD+DEAE=AD+DE ACAC与与AE AE 共线共线如图,已知如图,已知如图,已知如图,已知AD=3ABAD=3ABAD=3ABAD=3AB、DE=3BCDE=3BCDE=3BCDE=3BC,试证明,试证明,试证明,试证明ACACACAC与与与与AEAEAEAE共线。共线。共线。共线。摇身一变摇身一变例例3 3:又又又又 ACACACAC与与与与AEAEAEAE有公共点有公共点有公共点有公共点A A A A,A A A A、C C C C、E E E E三点共线三点共线三点共线三点共线.定理应用定理应用变式变式1 1:如图,已知
6、如图,已知如图,已知如图,已知AD=3ABAD=3ABAD=3ABAD=3AB、AE=3ACAE=3ACAE=3ACAE=3AC,试证明,试证明,试证明,试证明BCBCBCBC和和和和DEDEDEDE共线。共线。共线。共线。变式变式:如图,已知如图,已知如图,已知如图,已知AD=3ABAD=3ABAD=3ABAD=3AB、DE=3BCDE=3BCDE=3BCDE=3BC,试判断试判断试判断试判断A A A A、C C C C、E E E E三点位置三点位置三点位置三点位置关系关系关系关系?结论:向量共线定理可用来解决向量共线定理可用来解决向量共线定理可用来解决向量共线定理可用来解决:向量共线和
7、三点共线问题。向量共线和三点共线问题。向量共线和三点共线问题。向量共线和三点共线问题。下 页上 页首 页 小 结结 束判断下列各小题中的向量判断下列各小题中的向量a与与b是否共线是否共线.下 页上 页首 页 小 结结 束 二、知识应用:二、知识应用:二、知识应用:二、知识应用:1.1.1.1.证明证明证明证明 向量共线;向量共线;向量共线;向量共线;2.2.2.2.证明证明证明证明 三点共线三点共线三点共线三点共线:一、概念与定理一、概念与定理一、概念与定理一、概念与定理 a a a a 的定义及运算律的定义及运算律的定义及运算律的定义及运算律 向量共线定理向量共线定理向量共线定理向量共线定理
8、 (a0)(a0)(a0)(a0)b=a b=a b=a b=a 向量向量向量向量a a a a与与与与b b b b共线共线共线共线下 页上 页首 页 小 结结 束C.A.B.2.设 是非零向量,是非零实数,下列结论正确的是().D.1.下列四个说法正确的个数有().B.2个A.1个C.3个D.4个BC下 页上 页首 页 小 结结 束3.在 中,设D为边的中点,求证:解:因为()()所以,所证等式成立所以,所证等式成立下 页上 页首 页 小 结结 束E过点B作BE,使连接CE则四边形ABEC是平行四边形,D是BC中点,则D也是AE中点.由向量加法平行四边形法则有解2:下 页上 页首 页 小
9、结结 束(C)分析分析:由 所以 在平行四边形ABCD中,M为BC的中点,则 等于 4.4.5.5.ABCD下 页上 页首 页 小 结结 束6.6.如图,在平行四边形如图,在平行四边形如图,在平行四边形如图,在平行四边形ABCDABCD中,点中,点中,点中,点MM是是是是ABAB中点,点中点,点中点,点中点,点N N在线段在线段在线段在线段BDBD上,且有上,且有上,且有上,且有BN=BDBN=BD,求证:,求证:,求证:,求证:MM、N N、C C三点共线。三点共线。三点共线。三点共线。提示:设提示:设提示:设提示:设AB =AB =a a BC =BC =b b则则则则MN=MN=a+a+b b MC=MC=a+a+b b