空间两条直线的位置关系优秀PPT.ppt

上传人:1398****507 文档编号:78599100 上传时间:2023-03-18 格式:PPT 页数:24 大小:592.50KB
返回 下载 相关 举报
空间两条直线的位置关系优秀PPT.ppt_第1页
第1页 / 共24页
空间两条直线的位置关系优秀PPT.ppt_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《空间两条直线的位置关系优秀PPT.ppt》由会员分享,可在线阅读,更多相关《空间两条直线的位置关系优秀PPT.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.1.2 空间中两直线的空间中两直线的位置关系位置关系推断下列命题对错:推断下列命题对错:1、假如一条直线上有一个点在一个平面上,则这条直线上、假如一条直线上有一个点在一个平面上,则这条直线上的全部点都在这个平面内。(的全部点都在这个平面内。()2、将书的一角接触课桌面,这时书所在平面和课桌所在平、将书的一角接触课桌面,这时书所在平面和课桌所在平面只有一个公共点。面只有一个公共点。()3、四个点中假如有三个点在同一条直线上,那么这四个点、四个点中假如有三个点在同一条直线上,那么这四个点必在同一个平面内。必在同一个平面内。()4、一条直线和一个点可以确定一个平面。(、一条直线和一个点可以确定一

2、个平面。()5、假如一条直线和另两条直线都相交,那么这三条直线可、假如一条直线和另两条直线都相交,那么这三条直线可以确定一个平面。以确定一个平面。()平面有关学问(复习平面有关学问(复习)ABCD复习:平面内两条直线的位置关系复习:平面内两条直线的位置关系相交直线相交直线平行直线平行直线相交直线相交直线(有一个公共点)(有一个公共点)平行直线平行直线(无公共点)(无公共点)两路相交两路相交立交桥立交桥立交桥中立交桥中,两条路途两条路途AB,CDaboab既不平行,又不相交既不平行,又不相交视察实例视察实例推断下列直线的位置关系推断下列直线的位置关系:1、竖直的两条电线杆所在的直线、竖直的两条电

3、线杆所在的直线思索:在平面内,两条不重合的直线之间有几种位置关系?2、十字路口的两条路所在的直线、十字路口的两条路所在的直线3、教室内的日光灯管所在的直线与黑板的左右两侧、教室内的日光灯管所在的直线与黑板的左右两侧所在的直线所在的直线空间的两直线呢空间的两直线呢?不同在任何一个平面内的两条直线叫做不同在任何一个平面内的两条直线叫做异面异面直线直线。(既不相交也不平行的两条直线)。(既不相交也不平行的两条直线)不同在任何一个平面内1、异面直线、异面直线推断:推断:直线直线m和和l是异面直线吗是异面直线吗?lmml(1)(2),则则 与与 是异面直线是异面直线(3)a,b不同在平面不同在平面 内内

4、,则则a与与b异面异面异面直线的画法异面直线的画法:通常用一个或两个平面来衬托通常用一个或两个平面来衬托,异面直线异面直线不同在任何一个平面不同在任何一个平面的特点的特点1、相交、相交2、平行、平行ml只有一个公共点只有一个公共点没有公共点没有公共点在同一平面在同一平面2、空间中两直线的三种位置关系、空间中两直线的三种位置关系3、异面直线、异面直线mPl没有公共点没有公共点不同在任一平面不同在任一平面mlP小结、空间中两直线的位置关系小结、空间中两直线的位置关系没有没有只有一个只有一个没有没有共面共面不共面不共面共面共面平行平行相交相交异面异面位置关系位置关系公共点个数公共点个数是否共面是否共

5、面HGCADBEFGHEF(B)(C)DA探究:下图是一个正方体的绽开图,假如将它还原为探究:下图是一个正方体的绽开图,假如将它还原为正方体,那么正方体,那么AB,CD,EF,GH这四条线段所在的直线是这四条线段所在的直线是异面直线的有几对异面直线的有几对?相交直线有几对相交直线有几对?平行直线有几对平行直线有几对?二、空间直线的平行关系二、空间直线的平行关系若若ab,bc,1、平行关系的传递性、平行关系的传递性caabc c公理公理4 平行于同始终线的两直线相互平行平行于同始终线的两直线相互平行a则则ac例例1:在正方体:在正方体ABCDA1B1C1D1中,直线中,直线 AB与与C1D1 ,

6、AD1与与 BC1 1 是什么位置关系?为什么?是什么位置关系?为什么?C1ABCDA1B1D1练习:在上例中,练习:在上例中,AA1与与CC1,AC与与A1C1的位置是什么关系?的位置是什么关系?例例2 已知已知ABCD是四个顶点不在同一个平面内的是四个顶点不在同一个平面内的空间四边形,空间四边形,E,F,G,H分别是分别是AB,BC,CD,DA的中点,连结的中点,连结EF,FG,GH,HE,求证,求证EFGH是一个平行四边形。是一个平行四边形。解题思想:解题思想:EH是是ABD的中位线的中位线 EH BD且且EH=BD同理,同理,FG BD且且FG=BDEH FG且且EH=FGEFGH是一

7、个平行四边形是一个平行四边形证明:证明:连结连结BD把所要解的把所要解的立体几何立体几何问题转化为问题转化为平面几何平面几何的问题的问题解立体几何时解立体几何时最主要、最常用最主要、最常用的一种方法。的一种方法。AB DEFGHC变式变式1:已知已知ABCD是四个顶点不在同一个平面是四个顶点不在同一个平面内的空间四边形,内的空间四边形,E,F,G,H分别是分别是AB,BC,CD,DA的中点,连结的中点,连结EF,FG,GH,HE,若,若ACBD,那么四边形,那么四边形EFGH是一个什么图形?是一个什么图形?AB DEFGHC变式变式2:四边形:四边形ABCD是是空间四边形空间四边形,E、H分分

8、 别是别是AB,AD的中点的中点,F、G分别是分别是CB,CD上的点,且上的点,且 求证:四边形求证:四边形EFGH是梯形是梯形ABDCEFGH平行公理平行公理2、等角定理、等角定理空间中假如两个角的两边分别对应平行,那么这两个空间中假如两个角的两边分别对应平行,那么这两个角相等或互补。角相等或互补。C1ABCDA1B1D1两直线的夹角:两直线的夹角:两直线相交所成的两直线相交所成的4个角中个角中,其中其中不大于不大于 的角叫做两直线的夹角的角叫做两直线的夹角三、两条异面直线所成的角三、两条异面直线所成的角如图所示,如图所示,a,b是两条是两条异面直线,异面直线,在空间中任选一点在空间中任选一

9、点O,过过O点分别作点分别作 a,b的平行线的平行线 a和和 b,abPabO 则这两条线所成则这两条线所成的锐角的锐角(或直角),(或直角),称为称为异面直线异面直线a,b所成的角所成的角。?任选任选Oa若两条异面直线所成角为若两条异面直线所成角为90,则称它们相互垂直。,则称它们相互垂直。异面直线异面直线a与与b垂直也记作垂直也记作ab异面直线所成角异面直线所成角的取值范围:的取值范围:平平移移例例 3 在正方体在正方体ABCDA1B1C1D1中指出下列各对线段所中指出下列各对线段所成的角:成的角:练习:练习:1、求直线、求直线AD1与与B1C所成的夹角;所成的夹角;2、与直线、与直线BB

10、1垂直的棱有多少条?垂直的棱有多少条?1)AB与与CC1;2)A1 B1与与AC;3)A1B与与D1B1。B1CC1ABDA1D11)AB与CC1所成的角=9 02)A1 B1与AC所成的角=4 53)A1B与D1B1所成的角=6 02)与棱)与棱BB1垂直的棱有:垂直的棱有:ABCDA1B1C1D1AD、A1D1、DC、D1C1、A1B1、AB、B1C1、BC、相交:相交:异面:异面:垂直垂直相交垂直相交垂直异面垂直异面垂直B1CC1ABDA1D11)直线)直线AD1与与B1C所成的夹角所成的夹角9 0填空:填空:1、空间两条不重合的直线的位置关系有、空间两条不重合的直线的位置关系有_、_、

11、_三种。三种。2、没有公共点的两条直线可能是、没有公共点的两条直线可能是_直线,也有可能是直线,也有可能是 _直线。直线。3、和两条异面直线中的一条平行的直线与另一条的位置关系、和两条异面直线中的一条平行的直线与另一条的位置关系 有有_。4、过已知直线上一点可以作、过已知直线上一点可以作_条直线与已知直线垂直。条直线与已知直线垂直。5、过已知直线外一点可以作、过已知直线外一点可以作_条直线与已知直线垂直。条直线与已知直线垂直。平行平行相交相交异面异面平行平行异面异面多数多数多数多数相交、异面相交、异面1、分别在两个平面内的两条直线确定是异面直线。、分别在两个平面内的两条直线确定是异面直线。()

12、2、空间两条不相交的直线确定是异面直线。、空间两条不相交的直线确定是异面直线。()3、垂直于同一条直线的两条直线必平行。、垂直于同一条直线的两条直线必平行。()4、若一条直线垂直于两条平行直线中的一条,则它确定、若一条直线垂直于两条平行直线中的一条,则它确定与另一条直线垂直。与另一条直线垂直。()推断对错:推断对错:请完成课本请完成课本P48 的练习的练习珍惜时间珍惜时间,尽力而为尽力而为,祝愿全部的同学学习开心祝愿全部的同学学习开心!作业作业:1.P51-52 A组组 3.4(1)(2)(3)B组组 1 (做在书上做在书上)2.P51 A组组 6(做在作业本上做在作业本上)今日所讲的学问你学

13、会了吗今日所讲的学问你学会了吗?假如你学会了假如你学会了,请完成下列作业请完成下列作业!假如你还没学会假如你还没学会,请通过下列作业请通过下列作业把它学会把它学会!1、空间中两直线的位置关系、空间中两直线的位置关系2、空间直线的平行关系及相关定理、空间直线的平行关系及相关定理3、异面直线的定义及两条异面直线所、异面直线的定义及两条异面直线所成的角成的角思索题:思索题:1、a与与b是异面直线,且是异面直线,且ca,则,则c与与b确定(确定()。)。(A)异面)异面 (B)相交)相交 (C)平行)平行 (D)不平行)不平行2、正方体一条对角线与正方体的棱可组成的异面直线的对数、正方体一条对角线与正方体的棱可组成的异面直线的对数 是(是()对。)对。(A)6 (B)3 (C)8 (D)123、一条直线和两条异面直线都相交,则它们可以确定(、一条直线和两条异面直线都相交,则它们可以确定()平面。平面。(A)一个)一个 (B)两个)两个 (C)三个)三个 (D)四个)四个

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 商业计划书

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁