二次函数应用习题课件-.优秀PPT.ppt

上传人:1398****507 文档编号:78336869 上传时间:2023-03-17 格式:PPT 页数:48 大小:966KB
返回 下载 相关 举报
二次函数应用习题课件-.优秀PPT.ppt_第1页
第1页 / 共48页
二次函数应用习题课件-.优秀PPT.ppt_第2页
第2页 / 共48页
点击查看更多>>
资源描述

《二次函数应用习题课件-.优秀PPT.ppt》由会员分享,可在线阅读,更多相关《二次函数应用习题课件-.优秀PPT.ppt(48页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学九年级数学(上上)其次章其次章 二次函数二次函数 二次函数的应用驶向胜利的彼岸3、请写出如图所示的抛物线的解析式:、请写出如图所示的抛物线的解析式:课课 内内 练练 习习(0 0,1 1)(2 2,4 4)x xy yO O 一座拱桥的示意图如图,当水面宽一座拱桥的示意图如图,当水面宽12m12m时,桥洞顶部时,桥洞顶部离水面离水面4m4m。已知桥洞的拱形是抛物线,要求该抛物线。已知桥洞的拱形是抛物线,要求该抛物线的函数解析式,你认为首先要做的工作是什么的函数解析式,你认为首先要做的工作是什么?假如以假如以水平方向为水平方向为x x轴,取以下三个不同的点为坐标原点:轴,取以下三个不同

2、的点为坐标原点:1 1、点、点A 2A 2、点、点B 3B 3、抛物线的顶点、抛物线的顶点C C所得的函数解析式相同吗?所得的函数解析式相同吗?请试一试。哪一种取法求请试一试。哪一种取法求得的函数解析式最简洁?得的函数解析式最简洁?探究活动:A AB BC C4m4m12m12m 已知二次函数已知二次函数y=axy=ax2 2bx+cbx+c的图象如图所示,的图象如图所示,且且OA=OCOA=OC,由抛物线的特征请尽量多地写出一些含,由抛物线的特征请尽量多地写出一些含有有a a、b b、c c三个字母的等式或不等式:三个字母的等式或不等式:xyoAB-11-1C 1、在平面直角坐标系中,有一个

3、二次函数的图象交 x 轴于(-4,0),(2,0)两点,现将此二次函数图象向右移动 h 个单位,再向上移动 k 个单位,发觉新的二次函数图象与x轴相交于(-1,0),(3,0)两点,则h的值为()(A)0 (B)1 (C)2 (D)4C 2 2、如图如图,直线直线y=x+2y=x+2与与x x轴相交于点轴相交于点A,A,与与y y轴相交于轴相交于点点B,ABBC,B,ABBC,且点且点C C在在x x轴上轴上,若抛物线若抛物线y=ax+bx+c y=ax+bx+c 以以C C为顶点,且经过点为顶点,且经过点B B,则抛物线的解析式为,则抛物线的解析式为 2ABCxyOy=(x-2)122 二次

4、函数y=ax +bx+c的图象的一部分如图所示,已知它的顶点M在其次象限,且经过点A(1,0)和点B(0,1)。(04杭州)(1)请推断实数a的取值范围,并说明理由;2xy1B1AO54(2)设此二次函数的图象)设此二次函数的图象与与x轴的另一个交点为轴的另一个交点为C,当当 AMC的面积为的面积为 ABC的的 倍时,求倍时,求a的值。的值。-1a0 某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情和生产状况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预料,供应了两个方面的信息。如图甲、图乙(注:两图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成

5、本,生产成本6月份最低,图甲的图象是线段,图乙的图象是抛物线)。请你依据图象供应的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价成本)(2)哪个月出售这种蔬菜,每千克的收益最大?请说明理由。1 2 3 4 5 6 7 月每千克售价(元)53O1 2 3 4 5 6 7 月每千克成本(元)53O1246甲乙w(1).设矩形的一边设矩形的一边AB=xm,那么那么AD边的长度如何表示?边的长度如何表示?w(2).设矩形的面积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少?何时面积最大 w如图如图,在一个直角三角形的内部作一个矩形在一个直角三角

6、形的内部作一个矩形ABCD,其中,其中ABAB和和ADAD分别在两直角边上分别在两直角边上.想一想想一想P621 1MN40m30mABCDw(1).设矩形的一边设矩形的一边AB=xm,那么那么AD边的长度如何表示?边的长度如何表示?w(2).设矩形的面积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少?何时面积最大 w如图如图,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其中其中ABAB和和ADAD分别在两直角边上分别在两直角边上.想一想想一想P621 1ABCDMN40m30mxmbmw(1).假如设矩形的一边假如设矩形的

7、一边AD=xm,那那么么AB边的长度如何表示?边的长度如何表示?w(2).设矩形的面积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少?何时面积最大 w如图如图,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其中其中ABAB和和ADAD分别在两直角边上分别在两直角边上.想一想想一想P622 2驶向胜利的彼岸ABCDMN40m30mbmxmw(1).设矩形的一边设矩形的一边BC=xm,那么那么AB边的长度如何表示?边的长度如何表示?w(2).设矩形的面积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少

8、?何时面积最大 w如图如图,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其顶点其顶点A A和点和点D D分别在两直角边上分别在两直角边上,BCBC在斜边上在斜边上.想一想想一想P633 3驶向胜利的彼岸ABCDMNP40m30mxmbmHG何时窗户通过的光线最多w某建筑物的窗户如图所示某建筑物的窗户如图所示,它的上半部是半圆它的上半部是半圆,下下半部是矩形半部是矩形,制造窗框的材料总长制造窗框的材料总长(图中全部的黑线图中全部的黑线的长度和的长度和)为为15m.15m.当当x x等于多少时等于多少时,窗户通过的光线最窗户通过的光线最多多(结果精确到结果精确

9、到0.01m)?0.01m)?此时此时,窗户的面积是多少窗户的面积是多少?做一做做一做P625 5xxy1.理解问题理解问题;“二次函数应用”的思路 w回顾上一节回顾上一节“最大利润最大利润”和本节和本节“最大面积最大面积”解解决问题的过程,你能总结一下解决此类问题的基本决问题的过程,你能总结一下解决此类问题的基本思路吗?与同伴沟通思路吗?与同伴沟通.议一议议一议P634 42.分析问题中的变量和常量分析问题中的变量和常量,以及它们之间的关系以及它们之间的关系;3.用数学的方式表示出它们之间的关系用数学的方式表示出它们之间的关系;4.做数学求解做数学求解;5.检验结果的合理性检验结果的合理性,

10、拓展等拓展等.例题例题:如图,一单杠高如图,一单杠高2.2米,两立柱米,两立柱之间的距离为之间的距离为1.6米,将一根绳子的米,将一根绳子的两端栓于立柱与铁杠结合处,绳子两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。自然下垂呈抛物线状。一身高一身高0.70.7米米的小孩站在离立柱的小孩站在离立柱0.40.4米处,其头部米处,其头部刚好触上绳子,求绳子最低点到地刚好触上绳子,求绳子最低点到地面的距离。面的距离。ABCD0.71.62.20.4EFOxy例题例题:如图,一单杠高如图,一单杠高2.2米,两立柱米,两立柱之间的距离为之间的距离为1.6米,将一根绳子的米,将一根绳子的两端栓于立柱与铁

11、杠结合处,绳子两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。自然下垂呈抛物线状。一身高一身高0.70.7米米的小孩站在离立柱的小孩站在离立柱0.40.4米处,其头部米处,其头部刚好触上绳子,求绳子最低点到地刚好触上绳子,求绳子最低点到地面的距离。面的距离。ABCD0.71.62.20.4EFOxy例题例题:如图,一单杠高如图,一单杠高2.2米,两立柱米,两立柱之间的距离为之间的距离为1.6米,将一根绳子的米,将一根绳子的两端栓于立柱与铁杠结合处,绳子两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。自然下垂呈抛物线状。一身高一身高0.70.7米米的小孩站在离立柱的小孩站在离立柱0.40.4

12、米处,其头部米处,其头部刚好触上绳子,求绳子最低点到地刚好触上绳子,求绳子最低点到地面的距离。面的距离。ABCD0.71.62.20.4EFOxyABCD0.71.62.20.4EF解解:如图,:如图,所以,绳子最低点到地面所以,绳子最低点到地面 的距离为的距离为 0.2米米.Oxy 以以CD所在的直线为所在的直线为X轴,轴,CD的中垂线为的中垂线为Y轴建立轴建立 直角坐标系,直角坐标系,则则 B(0.8,2.2),),F(-0.4,0.7)设设 y=ax +k,从而有从而有 0.64a+k=2.2 0.16a+k=0.72解得:解得:a=K=0.2258所以,所以,y=x +0.2 顶点顶点

13、 E(0,0.2)2258例例1.如图,一位运动员在距篮下如图,一位运动员在距篮下4m处起处起跳投篮,球运行的路途是抛物线,当球运跳投篮,球运行的路途是抛物线,当球运行的水平距离是行的水平距离是2.5m时,球达到最大高度时,球达到最大高度3.5m ,已知篮筐中心到地面的距离已知篮筐中心到地面的距离3.05m,问球出手时离地面多高时才能中?问球出手时离地面多高时才能中?球的出手点球的出手点A的横坐标为的横坐标为-2.5,将,将x=-2.5代入抛物线表达式得代入抛物线表达式得y=2.25,即当出手高即当出手高度为度为2.25m时,才能投中时,才能投中。xy2.5m4m3.05ABCO3.5解:建立

14、如图所示的直角坐标系,则球的最解:建立如图所示的直角坐标系,则球的最 高点和球篮的坐标分别为高点和球篮的坐标分别为B(0,3.5),C(1.5,3.05).3.5=c3.05=1.52a+c 设所求的二次函数的表达式为设所求的二次函数的表达式为y=ax2+c.将点将点B和点和点C的坐标代入,得的坐标代入,得 解得解得a=-02c=3.5该抛物线的表达式为该抛物线的表达式为y=-0.2x2+3.5例例2启明公司生产某种产品,每件产品成本是启明公司生产某种产品,每件产品成本是3元,售价是元,售价是4元,元,年销售量是年销售量是10万件,为了获得更好的效益,公司准备拿出确定的万件,为了获得更好的效益

15、,公司准备拿出确定的 资金做广告,依据阅历,每年投入的广告费是资金做广告,依据阅历,每年投入的广告费是x(万元)时,产(万元)时,产 品的年销售量将是原销售量的品的年销售量将是原销售量的y倍,且倍,且y=x2+x+,假如把假如把 利润看作是销售总额减去成本费和广告费:利润看作是销售总额减去成本费和广告费:试写出年利润试写出年利润s(万元万元)与广告费与广告费x(万元万元)的函数关系式,并计算广的函数关系式,并计算广 告费是多少万元时,公司获得的年利润最大及最大年利润是多少告费是多少万元时,公司获得的年利润最大及最大年利润是多少 万元。万元。解:解:S=10()(4-3)-x=-x2+6x+7

16、当当x=3时,时,S最大最大=16 当广告费是当广告费是3万元时,公司获得的最大年利益是万元时,公司获得的最大年利益是16万元万元。把把中的最大利润留出中的最大利润留出3 3万元做广告,其余资金投资新项目,现有万元做广告,其余资金投资新项目,现有六个项目可供选择,各项目每股投资金额和预料年收益如下表:六个项目可供选择,各项目每股投资金额和预料年收益如下表:项目 A B C D E F每股(万元)5 2 6 4 6 8收益(万元)0.55 0.4 0.6 0.5 0.9 1假如每个项目只能投一股,且要求全部投资项目的收益总额不低于假如每个项目只能投一股,且要求全部投资项目的收益总额不低于1.6万

17、元,问有几种符合要求的投资方式。写出每种投资方式所选万元,问有几种符合要求的投资方式。写出每种投资方式所选的项目。的项目。解:(解:(2)用于再投资的资金是)用于再投资的资金是16-3=13(万元),经分析,有两(万元),经分析,有两种投资方式符合要求。一种是取种投资方式符合要求。一种是取A,B,E各一股,投入资金为各一股,投入资金为5+2+6=13(万元),收益为(万元),收益为0.55+0.4+0.9=1.85(万元)(万元)1.6(万(万元);另一种是取元);另一种是取B,D,E各一股,投入资金为各一股,投入资金为2+4+6=12(万元)(万元)(万元)。(万元)。例例3.小明的家门前有

18、一块空地,空地外有一面长小明的家门前有一块空地,空地外有一面长10米的围墙,为米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的便利,准备在花圃的中间再围出一条宽为一米的通道及在左右花便利,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个圃各放一个1米宽的门(木质)。米宽的门(木质)。花圃的宽花圃的宽AD原委应为多少米才能使花圃的面积最大?原委应为多少米才能使花圃的面积最大?解:设解:设AD=x,则

19、则AB=32-4x+3=35-4x 从而从而S=x(35-4x)-x=-4x2+34x AB10 6.25x S=-4x2+34x,对称轴,对称轴x=4.25,开口朝下开口朝下 当当x4.25时时S随随x的增大而减小的增大而减小 故当故当x=6.25时,时,S取最大值取最大值56.25 BDAHEGFC二次函数与拱桥问题二次函数与拱桥问题练习练习 市植物园人工湖上有抛物线型拱桥,正常水位时桥下水面宽市植物园人工湖上有抛物线型拱桥,正常水位时桥下水面宽20米,拱高米,拱高4 米,根据此条件建立如图所示坐标系,得知此时抛物线的解析式为米,根据此条件建立如图所示坐标系,得知此时抛物线的解析式为 y=

20、x2+4 在正常水位基础上水位上升在正常水位基础上水位上升 h 米时,桥下水面宽为米时,桥下水面宽为d 米,求米,求d与与h 函数关系式。函数关系式。正常水位时,桥下水深正常水位时,桥下水深2米,为了保证游船顺利通过,桥下水面宽不得小于米,为了保证游船顺利通过,桥下水面宽不得小于18 求水深超过多少会影响过往游船在桥下顺利航行?求水深超过多少会影响过往游船在桥下顺利航行?yx(0,4)(10,0)(-10,0)OA(,h)例例3小明的家门前有一块空地,空地外有一面长小明的家门前有一块空地,空地外有一面长10米的围墙,为米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买了美化生

21、活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的便利,准备在花圃的中间在围出一条宽为一米的通道及在左右花便利,准备在花圃的中间在围出一条宽为一米的通道及在左右花圃各放一个圃各放一个1米宽的门(如图所示)。米宽的门(如图所示)。花圃的宽花圃的宽AD原委应为多少米才能使花圃的面积最大?原委应为多少米才能使花圃的面积最大?DAHEGFCB解:设解:设AD=x,则则AB=32-4x+3=35-4x 从而从而S=x(35-4x)-x=-4x2+34x AB10,6.25x S=-4x2+34x

22、,对称轴,对称轴x=4.25,开口朝下开口朝下 当当x4.25时时S随随x的增大而减小的增大而减小 故当故当x=6.25时,时,S取最大值取最大值56.25 正确练习:练习:如图所示,公园要建立圆形喷水池,在水池中心垂直如图所示,公园要建立圆形喷水池,在水池中心垂直于水面处安装一个柱子于水面处安装一个柱子OA,O恰在水面中心,恰在水面中心,OA1.25米,由柱子顶端米,由柱子顶端A处的喷头向外喷水,水流在各个方向沿处的喷头向外喷水,水流在各个方向沿形态相同的抛物线落下,形态相同的抛物线落下,为使水流形态较为美观,为使水流形态较为美观,要求设计成水流在离要求设计成水流在离OA距离为距离为1米处达

23、到距水面米处达到距水面最大高度为最大高度为2.25米米,假如假如不计其他因素不计其他因素,那么水池那么水池的半径至少要多少米,的半径至少要多少米,才能使喷出的水流不致才能使喷出的水流不致落到池外?落到池外?AO水水 面面CByxAO水水 面面CByx解:以水面解:以水面OC所的直线为所的直线为 x 轴,柱子轴,柱子OA所在的直线为所在的直线为y轴,轴,O为为 原点建立直角坐标系,原点建立直角坐标系,设抛物线的解析式为:设抛物线的解析式为:y=a(x h)+k,则有则有 1.25=a(0 1)+2.2522 解得:解得:a=-1 所以,所以,y=-(x 1)+2.252 则则A、B两点的坐标分别

24、为两点的坐标分别为A(o,1.25)B(1,2.25),令令 y=0,则则-(x 1)+2.25=02解得:解得:x=2.5 或或 x=-0.5(舍去舍去)所以,水池半径至少须要所以,水池半径至少须要2.5米。米。思索题:思索题:在上面的练习题中,若水池喷出抛物线形态不变,在上面的练习题中,若水池喷出抛物线形态不变,水池的半径为水池的半径为3.5米,要使水流不落到池外,此时水流米,要使水流不落到池外,此时水流最大高度应达多少米?(精确到最大高度应达多少米?(精确到0.1米)米)AO水水 面面CByx解:依题意,解:依题意,A(0,1.25),C(3.5,0)设设 y=-(x-h)+k,则有,则

25、有 -(0-h)+k=1.25 -(3.5-h)+K=0 解得解得 h=,k 3.7.所以,此所以,此时水流最大高度水流最大高度应达达3.7米米.222117练习练习1:一男生推铅球一男生推铅球,铅球行进高度铅球行进高度y(m)与水平距离与水平距离x(m)之间的函数关系式是之间的函数关系式是:y=-x2+x+.(1)画出函数图象画出函数图象;(2)视察图象视察图象,说出铅球推出的距离说出铅球推出的距离;铅球出手时的高铅球出手时的高度度;铅球行进过程中的最高高度铅球行进过程中的最高高度.1212335yx0YX练习练习2:如图,在如图,在ABC中,中,B90,点,点P从点从点A起先沿起先沿AB边

26、向点边向点B以以1厘米秒的速厘米秒的速度移动,点度移动,点Q从点从点B起先沿起先沿BC边向点边向点C以以2厘米秒的速度移动,假如厘米秒的速度移动,假如P,Q分别分别从从A,B同时动身,几秒后同时动身,几秒后ABC的面的面积最大?最大面积是多少?积最大?最大面积是多少?ABCPQ练习练习3:某人假如将进货单价为某人假如将进货单价为8元的商品按每件元的商品按每件10元元出售,每天可销售出售,每天可销售100件,现在他接受提高售价,件,现在他接受提高售价,削减进货是的方法增加利润,已知这种商品每涨削减进货是的方法增加利润,已知这种商品每涨1元,其销售量就要削减元,其销售量就要削减10件,问他将售价定

27、为件,问他将售价定为多少元时,才能使每天所赚利润最大?并求最大多少元时,才能使每天所赚利润最大?并求最大利润。利润。思索题:思索题:某商店经销一种销售成本为每千克某商店经销一种销售成本为每千克40元的水产品,据市场元的水产品,据市场分析,若按每千克分析,若按每千克50元销售,一个月能销售出元销售,一个月能销售出500千克;销售千克;销售单价每涨单价每涨1元,月销售量就削减元,月销售量就削减10千克,针对这种水产品的销千克,针对这种水产品的销售状况,请解答以下问题:售状况,请解答以下问题:当销售单价定为每千克当销售单价定为每千克55元时,计算月销售量和月销售元时,计算月销售量和月销售 利润;利润

28、;设销售单价为每千克设销售单价为每千克x元元,月销售利润为月销售利润为y元,求元,求y与与x的的 函数关系式(不必写出函数关系式(不必写出x的取值范围);的取值范围);商店想在月销售成本不超过商店想在月销售成本不超过10000元的状况下,使得月销元的状况下,使得月销 售利润达到售利润达到8000元,销售单价应为多少?元,销售单价应为多少?练习练习2、已知:用长为、已知:用长为12cm的铁丝围成一个矩形,一边长为的铁丝围成一个矩形,一边长为xcm.,面面积为积为ycm2,问何时矩形的面积最大?问何时矩形的面积最大?解:解:周长为周长为12cm,一边长为一边长为xcm ,另一边为(另一边为(6x)

29、cm 解解:由韦达定理得:由韦达定理得:x1x22k,x1x22k1=(x1x2)2 2 x1x24k22(2k1)4k24k2 4(k )21 当k 时,有最小值,最小值为 yx(6x)x26x (0 x6)(x3)29 a10,y有最大值有最大值 当当x3cm时,时,y最大值最大值9 cm2,此时矩形的另一边也为,此时矩形的另一边也为3cm答:矩形的两边都是答:矩形的两边都是3cm,即为正方形时,矩形的面积最大。,即为正方形时,矩形的面积最大。练习练习3、已知、已知x1、x2是一元二次方程是一元二次方程x22kx2k10的两根,求的两根,求 的最小值。的最小值。next例例1:如图,在一面

30、靠墙的空地上用长为如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽二道篱笆的长方形花圃,设花圃的宽AB为为x米,面积为米,面积为S平方米。平方米。(1)求求S与与x的函数关系式及自变量的取值范围;的函数关系式及自变量的取值范围;(2)当当x取何值时所围成的花圃面积最大,最大值是多少?取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为若墙的最大可用长度为8米,则求围成花圃的最大面积。米,则求围成花圃的最大面积。ABCD解:(1)AB为x米、篱笆长为24米 花圃宽为(244x)米 (3)墙的可用长度为8米 (2)当当

31、x 时,S最大值 36(平方米)Sx(244x)4x224 x (0 x6)0244x 6 4x6当x4cm时,S最大值32 平方米例例2 2:某高科技发展公司投资:某高科技发展公司投资500500万元万元,成功研制出成功研制出一种市场需求量较大的高科技替代产品一种市场需求量较大的高科技替代产品,艳羡投入艳羡投入资金资金15001500万元进行批量生产万元进行批量生产,已知行产每件产品的已知行产每件产品的成本为成本为4040元元,在销售过程中发觉在销售过程中发觉:当销售单价定为当销售单价定为100100元时元时,一年的销售量为一年的销售量为2020万件万件;销售单价每增加销售单价每增加1010

32、元元,年销售量就削减年销售量就削减1 1万件万件.设销售单价为设销售单价为x x(元),(元),年销售量为年销售量为y y(万件),年获利(年获利(万件),年获利(年获利=处销售额处销售额生产成本投资)为生产成本投资)为z z(万元)。(万元)。(4)公司支配:在第一年按年获利最大确)公司支配:在第一年按年获利最大确定的销售单价,进行销售;其次年年获利定的销售单价,进行销售;其次年年获利不低于不低于1130万元,请你借助函数的大致图万元,请你借助函数的大致图像说明,其次年的销售单价像说明,其次年的销售单价x(元),应确(元),应确定在什么范围。定在什么范围。(3)计算销售单价为)计算销售单价为

33、160元时的年获利,元时的年获利,并说明同样的年获利,销售单价还可以定并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万为多少元?相应的年销售量分别为多少万件?件?例 心理学家探讨发觉,一般状况下,学生的留意力随着老师讲课时间的变更而变更,讲课起先时,学生的留意力初步增加,中间有一段时间学生的留意力保持较为志向的状态,随后学生的留意力起先分散,经过试验分析可知,学生的留意力y随时间t的变更规律有如下关系(04黄冈)(1)讲课起先后第)讲课起先后第5分钟与讲课起先第分钟与讲课起先第25分钟比较,何分钟比较,何时学生的留意力更集中?时学生的留意力更集中?(2)讲课起先后多少分

34、钟,学生的留意力最集中?能)讲课起先后多少分钟,学生的留意力最集中?能持续多少分钟?持续多少分钟?(3)一道数学题,须要讲解)一道数学题,须要讲解24分钟,为了效果较好,分钟,为了效果较好,要求学生的留意力达到要求学生的留意力达到180,那么经过适当支配,老师,那么经过适当支配,老师能否在留意力达到所需的状态下讲解完这道题目?能否在留意力达到所需的状态下讲解完这道题目?有一种螃蟹,从海上捕获后不放养最多只能存活两天,有一种螃蟹,从海上捕获后不放养最多只能存活两天,假如放养在塘内,可以延长存活时间,但每天也有确定数假如放养在塘内,可以延长存活时间,但每天也有确定数量的蟹死去。假设放养期内蟹的个体

35、重量基本保持不变。量的蟹死去。假设放养期内蟹的个体重量基本保持不变。现有一经销商,按市场价收购了这种活蟹现有一经销商,按市场价收购了这种活蟹1000千克放养在千克放养在塘内,此时的市场价为每千克塘内,此时的市场价为每千克30元。据测算,此后每千克元。据测算,此后每千克活蟹的市场价每天可上升活蟹的市场价每天可上升1元,但是,放养一天需各种费元,但是,放养一天需各种费用支出用支出400元,且平均每天还有元,且平均每天还有10千克蟹死去,假定死蟹千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克均于当天全部售出,售价都是每千克20元。元。(1)设)设x天后每千克活蟹的市场价为天后每千克活蟹的市场价

36、为P元,写出元,写出P关于关于x的函数关系的函数关系式;式;(2)假如放养)假如放养x天后将活蟹一次性出售,并记天后将活蟹一次性出售,并记1000千克蟹的销售千克蟹的销售总额为总额为Q元,写出元,写出Q与与x的函数关系式;的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润)该经销商将这批蟹放养多少天后出售,可获最大利润(利润销售总额收购成本费用)?增大利润是多少?销售总额收购成本费用)?增大利润是多少?例例2:如图,等腰如图,等腰RtABC的直角边的直角边AB,点,点P、Q分别从分别从A、C两两点同时动身,以相等的速度作直线运动,已知点点同时动身,以相等的速度作直线运动,

37、已知点P沿射线沿射线AB运运动,点动,点Q沿边沿边BC的延长线运动,的延长线运动,PQ与直线相交于点与直线相交于点D。(1)设设 AP的长为的长为x,PCQ的面积为的面积为S,求出,求出S关于关于x的函数关系式;的函数关系式;(2)当当AP的长为何值时,的长为何值时,SPCQ=SABC 解:()P、Q分别从A、C两点同时动身,速度相等当P在线段AB上时 SPCQ CQPB=APPB=AP=CQ=x即即S (0 x2)动画演示例例2 2:某高科技发展公司投资:某高科技发展公司投资500500万元万元,成功研制出成功研制出一种市场需求量较大的高科技替代产品一种市场需求量较大的高科技替代产品,艳羡投

38、入艳羡投入资金资金15001500万元进行批量生产万元进行批量生产,已知行产每件产品的已知行产每件产品的成本为成本为4040元元,在销售过程中发觉在销售过程中发觉:当销售单价定为当销售单价定为100100元时元时,一年的销售量为一年的销售量为2020万件万件;销售单价每增加销售单价每增加1010元元,年销售量就削减年销售量就削减1 1万件万件.设销售单价为设销售单价为x x(元),(元),年销售量为年销售量为y y(万件),年获利(年获利(万件),年获利(年获利=处销售额处销售额生产成本投资)为生产成本投资)为z z(万元)。(万元)。(4)公司支配:在第一年按年获利最大确)公司支配:在第一年

39、按年获利最大确定的销售单价,进行销售;其次年年获利定的销售单价,进行销售;其次年年获利不低于不低于1130万元,请你借助函数的大致图万元,请你借助函数的大致图像说明,其次年的销售单价像说明,其次年的销售单价x(元),应确(元),应确定在什么范围。定在什么范围。(3)计算销售单价为)计算销售单价为160元时的年获利,元时的年获利,并说明同样的年获利,销售单价还可以定并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万为多少元?相应的年销售量分别为多少万件?件?例 心理学家探讨发觉,一般状况下,学生的留意力随着老师讲课时间的变更而变更,讲课起先时,学生的留意力初步增加,中间有一

40、段时间学生的留意力保持较为志向的状态,随后学生的留意力起先分散,经过试验分析可知,学生的留意力y随时间t的变更规律有如下关系(04黄冈)(1)讲课起先后第)讲课起先后第5分钟与讲课起先第分钟与讲课起先第25分钟比较,何分钟比较,何时学生的留意力更集中?时学生的留意力更集中?(2)讲课起先后多少分钟,学生的留意力最集中?能)讲课起先后多少分钟,学生的留意力最集中?能持续多少分钟?持续多少分钟?(3)一道数学题,须要讲解)一道数学题,须要讲解24分钟,为了效果较好,分钟,为了效果较好,要求学生的留意力达到要求学生的留意力达到180,那么经过适当支配,老师,那么经过适当支配,老师能否在留意力达到所需

41、的状态下讲解完这道题目?能否在留意力达到所需的状态下讲解完这道题目?有一种螃蟹,从海上捕获后不放养最多只能存活两天,有一种螃蟹,从海上捕获后不放养最多只能存活两天,假如放养在塘内,可以延长存活时间,但每天也有确定数假如放养在塘内,可以延长存活时间,但每天也有确定数量的蟹死去。假设放养期内蟹的个体重量基本保持不变。量的蟹死去。假设放养期内蟹的个体重量基本保持不变。现有一经销商,按市场价收购了这种活蟹现有一经销商,按市场价收购了这种活蟹1000千克放养在千克放养在塘内,此时的市场价为每千克塘内,此时的市场价为每千克30元。据测算,此后每千克元。据测算,此后每千克活蟹的市场价每天可上升活蟹的市场价每

42、天可上升1元,但是,放养一天需各种费元,但是,放养一天需各种费用支出用支出400元,且平均每天还有元,且平均每天还有10千克蟹死去,假定死蟹千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克均于当天全部售出,售价都是每千克20元。元。(1)设)设x天后每千克活蟹的市场价为天后每千克活蟹的市场价为P元,写出元,写出P关于关于x的函数关系的函数关系式;式;(2)假如放养)假如放养x天后将活蟹一次性出售,并记天后将活蟹一次性出售,并记1000千克蟹的销售千克蟹的销售总额为总额为Q元,写出元,写出Q与与x的函数关系式;的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润)该经销商

43、将这批蟹放养多少天后出售,可获最大利润(利润销售总额收购成本费用)?增大利润是多少?销售总额收购成本费用)?增大利润是多少?例例2:如图,等腰如图,等腰RtABC的直角边的直角边AB,点,点P、Q分别从分别从A、C两两点同时动身,以相等的速度作直线运动,已知点点同时动身,以相等的速度作直线运动,已知点P沿射线沿射线AB运运动,点动,点Q沿边沿边BC的延长线运动,的延长线运动,PQ与直线相交于点与直线相交于点D。(1)设设 AP的长为的长为x,PCQ的面积为的面积为S,求出,求出S关于关于x的函数关系式;的函数关系式;(2)当当AP的长为何值时,的长为何值时,SPCQ=SABC 解:()P、Q分

44、别从A、C两点同时动身,速度相等当P在线段AB上时 SPCQ CQPB=APPB=AP=CQ=x即即S (0 x2)(2)当当SPCQSABC时,有时,有 x1=1+,x2=1 (舍去)当AP长为1+时,SPCQSABC 此方程无解此方程无解 czsx 强化训练你知道吗,平常我们在跳大绳时,绳甩到最高处的形态可以看为抛物线。如图所示,正在甩绳的甲乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙丁分别站在距甲拿绳的手水平距离1米2.5米处,绳子到最高处时刚好通过他们的头顶。已知学生丙的身高是1.5米,求学生丁的身高?甲乙丙丁强化训练强化训练 某跳水运动员进行某跳水运动员进行1010米跳台跳水

45、训练时,身体(看成一点)米跳台跳水训练时,身体(看成一点)在空中的运动路途是经过原点在空中的运动路途是经过原点O O的一条抛物线。在跳某规的一条抛物线。在跳某规定动作时,正常状况下,该运动定动作时,正常状况下,该运动员在空中员在空中的最高处距水面的最高处距水面32/332/3米,米,入水入水处距池边的距离为处距池边的距离为4 4米,同米,同 时,时,运动员在距水面高度为运动员在距水面高度为5 5米米 以前,以前,必需完成规定的翻腾动作,必需完成规定的翻腾动作,并调并调整好入水姿态,否则就会出整好入水姿态,否则就会出 现失现失误。(误。(1 1)求这条抛物线的解)求这条抛物线的解 析式;析式;(

46、2 2)在某次试跳中,测)在某次试跳中,测 得运得运动员在空中运动路途是(动员在空中运动路途是(1 1)中的抛中的抛物线,且运动员在空中调物线,且运动员在空中调 整好整好入水姿态时,距池边的水平入水姿态时,距池边的水平 距离距离为为18/518/5米,问此次跳水会不米,问此次跳水会不 会失会失误?并通过计算说明理由。误?并通过计算说明理由。已知铅球所经过的路途是某个二次函数图像的一部分,如图所示,假如这个男同学的出手处A点的坐标(0,2),铅球路途的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01米).yox24862461012B(6,5)A(0,2)yox24862461012B(6,5)A(0,2)C

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 商业计划书

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁