《2012年四川省绵阳市中考数学试题(含答案).docx》由会员分享,可在线阅读,更多相关《2012年四川省绵阳市中考数学试题(含答案).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2012年四川省绵阳市中考数学试卷一选择题:本大题共12小题,每小题3分,共36分在每小题给出的4个选项中,只有一项是符合题目要求的。14的算术平方根是: 。A2; B-2; C2; D2。2点M(1,-2)关于原点对称的点的坐标是: 。A(-1,-2); B(1,2); C(-1,2); D(-2,1)。3下列事件中,是随机事件的是: 。A度量四边形的内角和为180;来源:学科网ZXXKB通常加热到100,水沸腾;C袋中有2个黄球,共五个球,随机摸出一个球是红球;D抛掷一枚硬币两次,第一次正面向上,第二次反面向上。4下列图形中如图1所示,既是轴对称图形,又是中心对称图形的是: 。图1来源:Z
2、xxk.Com5绵阳市统计局发布2012年一季度全市完成GDP共317亿元,居全省第二位,将这一数据用科学记数法表示为: 。A31.7109元; B3.171010元; C3.171011元; D31.71010元。6把一个正五菱柱如图2摆放,当投射线由正前方射到后方时,它的正投影是: 。图27如图3所示,将等腰直角三角形虚线剪去顶角后,1+2= 。图3A225;B235;C270;D与虚线的位置有关。8已知ab,c0,则下列关系一定成立的是: 。Aacbc; Ba/cb/c; Cc-ac-b; Dc+ac+b。9如图4所示,图(1)是一个长为2m,宽为2n(mn)的长方形,用剪刀沿图中虚线对
3、称轴剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是: 。图4A2mn;Bm+n2;Cm-n2;Dm2-n2。10在同一直角坐标系中,正比例函数y=2x的图象与反比例函数y=4-2k/x的图象没有交点,则实数k的取值范围在数轴上如图5所示表示为: 。图5来源:学科网11已知ABC中如图6所示,C=90,tanA=1/2 ,D是AC上一点,CBD=A,则sinABD= 。图6A3/5;B101/2/5;C3/10;D(3101/2)/10。图712如图7所示,P是等腰直角ABC外一点,把BP绕点B顺时针旋转90到BP,已知APB=135,PA
4、:PC=1:3,则PA:PB=: 。A1:21/2;B1:2;C31/2:2;D1:31/2。二填空题:本大题共6小题,每小题4分,共24分。13比-1低2的温度是 用数字填写。14如图8所示,ABCD,AD与BC交于点E,EF是BED的平分线,若1=30,2=40,则BEF= 度。图10图9图815 如图9所示,BC=EC,1=2,要使ABCDEC,则应添加的一个条件为 答案不唯一,只需填一个。16如图10所示,正方形的边长为2,以各边为直径在正方形内画半圆,则图中阴影部分的面积为 结果保留两位有效数字,参考数据3.14。17一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这
5、两个图形的面积相等,则原长方形的面积为 cm2。18如果关于x的不等式组:,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对a,b共有 个。三解答题:本大题共7小题,共90分解答应写出文字说明,证明过程或演算步骤。191计算:20+2化简:1+2x+图1120课外阅读是提高学生素养的重要途径,亚光初中为了了解学校学生的阅读情况,组织调查组对全校三个年级共1500名学生进行了抽样调查,抽取的样本容量为300。已知该校有初一学生600名,初二学生500名,初三学生400名。1为使调查的结果更加准确地反映全校的总体情况,应分别在初一年级随机抽取 人;在初二年级随机抽取 人;在初三年
6、级随机抽取 人请直接填空。2调查组对本校学生课外阅读量的统计结果分别用扇形统计图和频数分布直方图表示如图11所示请根据上统计图,计算样本中各类阅读量的人数,并补全频数分布直方图。3根据2的调查结果,从该校中随机抽取一名学生,他最大可能的阅读量是多少本?为什么?21如图12所示,PA、PB分别切O于A、B,连接PO、AB相交于D,C是O上一点,C=60。图121求APB的大小;2若PO=20cm,求AOB的面积。22已知关于x的方程x2-(m+2)x+(2m-1)=0。1求证:方程恒有两个不相等的实数根;来源:Z*xx*k.Com2若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的
7、直角三角形的周长。来源:学科网ZXXK23某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择。方案一:每克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内含3千克的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的,则超过3千克的部分的种子价格打7折。1请分别求出方案一和方案二中购买的种子数量x千克和付款金额Y元之间的函数关系式;2若你去购买一定量的种子,你会怎样选择方案?说明理由。24如图13所示,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DGAF,垂足为G。图131求证:AFBE;2试探究线段AO、
8、BO、GO的长度之间的数量关系;3若GO:CF=4:5,试确定E点的位置。25如图14所示,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+x/6+c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1)。已知AM=BC。图14图151求二次函数的解析式;2证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;3在2的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N。若直线lBD,如图14所示,试求1/BP+1/BQ的值;若l为满足条件的任意直线。如图15所示,中的
9、结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例。2012年四川省绵阳市中考数学试卷参考答案一选择题:本大题共12小题,每小题3分,共36分在每小题给出的4个选项中,只有一项是符合题目要求的。题号123456789101112答案ACDDBBCDCCAB二填空题:本大题共6小题,每小题4分,共24分。133。14350。15AC=CD。161.7。17100/9。186。三解答题:本大题共7小题,共90分解答应写出文字说明,证明过程或演算步骤。19解:1原式=1|2+|=12=1+1=2 原式=+=+=x+120解:1该校有初一学生600名,初二学生500名,初三学生400名,抽取的样
10、本容量为300。答图1应分别在初一年级随机抽取300600/1500 =120人;在初二年级随机抽取300500/1500 =100人;在初三年级随机抽取300400/1500 =80人。故答案为:120,100,80;2根据扇形图得出:30072/360 =60人,300(1-6%-22%-72/360100%)=156人,补全频数分布直方图,如答图1所示:3根据扇形图可知10本以上所占比例最大,故从该校中随机抽取一名学生,他最大可能的阅读量是10本以上。21解:1PA、PB分别切O于A、B,OAPA,OBPB,PAO=PBO=90,C=60,AOB=2C=260=120,APB=360-P
11、AO-PBO-AOB=60;2PA、PB分别切O于A、B,APO=APB/2=60/2=30,PA=PB,P在AB的垂直平分线上,OA=OB,O在AB的垂直平分线上,即OP是AB的垂直平分线,即ODAB,AD=BD=AB/2,PAO=90,AOP=60,在RtPAO中,AO=PO/2=20/2=10cm,在RtAOD中,AD=AOsin60=10=5cm,OD=OAcos60=10/2=5cm,AB=2AD=10cm,AOB的面积为:ABOD/2=105/2=25cm2。22解:1证明:=m+22-42m-1=m-22+4,在实数范围内,m无论取何值,m-22+44,即4,关于x的方程x2-m
12、+2x+2m-1=0恒有两个不相等的实数根;2根据题意,得12-1m+2+2m-1=0,解得,m=2,则方程的另一根为:m+2-1=2+1=3;当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2。23解:1方案一的函数是:y1=4x,方案二的函数是:;2当x3时,选择方案一;当x3时,4x15+3.5x-3,解得:x9,4x=15+3.5x-3,解得:x=9;当4x15+3.5x-3,解得:x9故当x9时,选择方案一;当
13、x=9时,选择两种方案都可以;当x9时,选择方案二。241证明:ABCD为正方形,且DE=CF,AE=DF,AB=AD,BAE=ADF=90,ABEDAF,ABE=DAF,又ABE+AEB=90,答图2DAF+AEB=90,AOE=90,即AFBE;2解:BO=AO+OG理由:由1的结论可知,ABE=DAF,AOB=DGA=90,AB=AD,则ABODAG,所以,BO=AG=AO+OG;3解:过E点作EHDG,垂足为H如答图2所示,由矩形的性质,得EH=OG,DE=CF,GO:CF=4:5,EH:ED=4:5,AFBE,AFDG,OEDG,AEB=EDH,ABEHED,AB:BE=EH:ED=
14、4:5,在RtABE中,AE:AB=3:4,故AE:AD=3:4,即AE=3AD/4。25解:1二次函数y=ax2+1 6 x+c的图象经过点B-3,0,M0,-1,解得a=1/6 ,c=-1。二次函数的解析式为:y=x2/6+x/6-1。2由二次函数的解析式为:y=x2/6+x/6-1,令y=0,得x2/6+x/6-1=0,解得x1=-3,x2=2,C2,0),BC=5;令x=0,得y=-1,M0,-1,OM=1。又AM=BC,OA=AM-OM=4,A0,4。设ADx轴,交抛物线于点D,如图1所示,则yD=x2/6+x/6-1=OA=4,解得x1=5,x2=-6位于第二象限,舍去D点坐标为5
15、,4。AD=BC=5,又ADBC,四边形ABCD为平行四边形。即在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形。设直线BD解析式为:y=kx+b,B-3,0,D5,4,解得:k=1/2 ,b=3/2,直线BD解析式为:y=x/2+3/2。3在RtAOB中,AB=5,又AD=BC=5,ABCD是菱形。若直线lBD,如图14所示.四边形ABCD是菱形,ACBD,AC直线l,BA/BP=BC/BQ=BN/BD=1/2,BA=BC=5,BP=BQ=10,1/BP+1/BQ=1/10+1/10=1/5;若l为满足条件的任意直线,如图15所示,此时中的结论依然成立,理由如下:ADBC,CDAB,PADDCQ,AP/CD=AD/CQ,APCQ=ADCD=55=25。1/BP+1/BQ=(1/AB+AP)+(1/BC+CQ)=(1/5+AP)+(1/5+CQ)=(5+AP+5+CQ)/(5+AP5+CQ)=10+AP+CQ 25+5(AP+CQ)+APCQ =10+AP+CQ/(50+5AP+CQ)=1/5。