《中国物联网行业前景如何_中国物联网行业分析报告_.docx》由会员分享,可在线阅读,更多相关《中国物联网行业前景如何_中国物联网行业分析报告_.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中国物联网行业前景如何_中国物联网行业分析报告_物联网相关概述一、物联网1、物联网的概念物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。我们用智能公交这个案例来加深对物联网概念的理解。目前,很多城市居民的智能手机中都安装了“掌上公交”APP,可以用手机随时随地查询每辆公交车的当前到达位置信息,这就是一种非常典型的物联网应用。在智能公交应用中,每辆公交车都安装了GPS定位系统和3G/4G网络传输模块,在车辆行驶过程中,GPS定位系统会实时采集公交车当前到达位置信息,
2、并通过车上的3G/4G网络传输模块发送给车辆附近的移动通信基站,经由电信运营商的3G/4G移动通信网络传送到智能公交指挥调度中心的数据处理平台,平台再把公交车位置数据发送给智能手机用户,用户的“掌上公交”软件就会显示出公交车的当前位置信息。这个应用实现了“物与物的相连”,即把公交车和手机这两个物体连接在一起,让手机可以实时获得公交车的位置信息,进一步讲,实际上也实现了“物和人的连接”,让手机用户可以实时获得公交车位置信息。在这个应用中,安装在公交车上的GPS定位设备就属于物联网的感知层;安装在公交车上的3G/4G网络传输模块以及电信运营商的3G/4G移动通信网络,属于物联网的网络层;智能公交指
3、挥调度中心的数据处理平台属于物联网的处理层;智能手机上安装的“掌上公交”APP,属于物联网的应用层。2物联网关键技术物联网是物与物相连的网络,通过为物体加装二维码、RFID标签、传感器等,就可以实现物体身份唯一标识和各种信息的采集,再结合各种类型网络连接,就可以实现人和物、物和物之间的信息交换。因此,物联网中的关键技术包括识别和感知技术(二维码、RFID、传感器等)、网络与通信技术、数据挖掘与融合技术等。(1)识别和感知技术二维码是物联网中一种很重要的自动识别技术,是在一维条码基础上扩展出来的条码技术。二维码包括堆叠式/行排式二维码和矩阵式二维码,后者较为常见。如图1-10所示,矩阵式二维码在
4、一个矩形空间中通过黑、白像素在矩阵中的不同分布进行编码。在矩阵相应元素位置上,用点(方点、圆点或其他形状)的出现表示二进制“1”,点的不出现表示二进制的“0”,点的排列组合确定了矩阵式二维条码所代表的意义。二维码具有信息容量大、编码范围广、容错能力强、译码可靠性高、成本低易制作等良好特性,已经得到了广泛的应用。RFID(Radio Frequency Identification)技术用于静止或移动物体的无接触自动识别,具有全天候、无接触、可同时实现多个物体自动识别等特点。RFID技术在生产和生活中得到了广泛的应用,大大推动了物联网的发展,我们平时使用的公交卡、门禁卡、校园卡等都嵌入了RFID
5、芯片,可以实现迅速、便捷的数据交换。从结构上讲,RFID是一种简单的无线通信系统,由RFID读写器和RFID标签两个部分组成。RFID标签是由天线、耦合元件、芯片组成的,是一个能够传输信息、回复信息的电子模块。RFID读写器是由天线、耦合元件、芯片组成的,用来读取(或者有时也可以写入)RFID标签中的信息。RFID使用RFID读写器及可附着于目标物的RFID标签,利用频率信号将信息由RFID标签传送至RFID读写器。以公交卡为例,市民持有的公交卡就是一个RFID标签(见图1-11),公交车上安装的刷卡设备就是RFID读写器,当我们执行刷卡动作时,就完成了一次RFID标签和RFID读写器之间的非
6、接触式通信和数据交换。传感器是一种能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,具有微型化、数字化、智能化、网络化等特点。人类需要借助于耳朵、鼻子、眼睛等感觉器官感受外部物理世界,类似地,物联网也需要借助于传感器实现对物理世界的感知。物联网中常见的传感器类型有光敏传感器、声敏传感器、气敏传感器、化学传感器、压敏传感器、温敏传感器、流体传感器等(见图1-12),可以用来模仿人类的视觉、听觉、嗅觉、味觉和触觉。(2)网络与通信技术物联网中的网络与通信技术包括短距离无线通信技术和远程通信技术。短距离无线通信技术包括Zigbee、NFC、蓝牙、Wi-Fi、RFID等。
7、远程通信技术包括互联网、2G/3G/4G移动通信网络、卫星通信网络等。(3)数据挖掘与融合技术物联网中存在大量数据来源、各种异构网络和不同类型系统,如此大量的不同类型数据,如何实现有效整合、处理和挖掘,是物联网处理层需要解决的关键技术问题。今天,云计算和大数据技术的出现,为物联网数据存储、处理和分析提供了强大的技术支撑,海量物联网数据可以借助于庞大的云计算基础设施实现廉价存储,利用大数据技术实现快速处理和分析,满足各种实际应用需求。3物联网的应用物联网已经广泛应用于智能交通、智慧医疗、智能家居、环保监测、智能安防、智能物流、智能电网、智慧农业、智能工业等领域,对国民经济与社会发展起到了重要的推
8、动作用,具体如下。智能交通。利用RFID、摄像头、线圈、导航设备等物联网技术构建的智能交通系统,可以让人们随时随地通过智能手机、大屏幕、电子站牌等方式,了解城市各条道路的交通状况、所有停车场的车位情况、每辆公交车的当前到达位置等信息,合理安排行程,提高出行效率。智慧医疗。医生利用平板电脑、智能手机等手持设备,通过无线网络,可以随时连接访问各种诊疗仪器,实时掌握每个病人的各项生理指标数据,科学、合理地制定诊疗方案,甚至可以支持远程诊疗。智能家居。利用物联网技术提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。比如,可以在工作单位通过智能手机远程开启家里的电饭煲、空调、门锁、监控、
9、窗帘和电灯等,家里的窗帘和电灯也可以根据时间和光线变化自动开启和关闭。环保监测。可以在重点区域放置监控摄像头或水质土壤成分检测仪器,相关数据可以实时传输到监控中心,出现问题时实时发出警报。智能安防。采用红外线、监控摄像头、RFID等物联网设备,实现小区出入口智能识别和控制、意外情况自动识别和报警、安保巡逻智能化管理等功能。智能物流。利用集成智能化技术,使物流系统能模仿人的智能,具有思维、感知、学习、推理判断和自行解决物流中某些问题的能力(如选择最佳行车路线,选择最佳包裹装车方案),从而实现物流资源优化调度和有效配置,提升物流系统效率。智能电网。通过智能电表,不仅可以免去抄表工的大量工作,还可以
10、实时获得用户用电信息,提前预测用电高峰和低谷,为合理设计电力需求响应系统提供依据。智慧农业。利用温度传感器、湿度传感器和光线传感器,实时获得种植大棚内的农作物生长环境信息,远程控制大棚遮光板、通风口、喷水口的开启和关闭,让农作物始终处于最优生长环境,提高农作物产量和品质。智能工业。将具有环境感知能力的各类终端、基于泛在技术的计算模式、移动通信技术等不断融入工业生产的各个环节,大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,将传统工业提升到智能化的新阶段。4物联网产业完整的物联网产业链主要包括核心感应器件提供商、感知层末端设备提供商、网络提供商、软件与行业解决方案提供商、系统集成商、运营
11、及服务提供商等环节 具体如下。核心感应器件提供商。提供二维码、RFID及读写机具、传感器、智能仪器仪表等物联网核心感应器件。感知层末端设备提供商。提供射频识别设备、传感系统及设备、智能控制系统及设备、GPS设备、末端网络产品等。网络提供商。包括电信网络运营商、广电网络运营商、互联网运营商、卫星网络运营商和其他网络运营商等。软件与行业解决方案提供商。提供微操作系统、中间件、解决方案等。系统集成商。提供行业应用集成服务。运营及服务提供商。开展行业物联网运营及服务。二、大数据与云计算、物联网的关系云计算、大数据和物联网代表了IT领域最新的技术发展趋势,三者既有区别又有联系。云计算最初主要包含了两类含
12、义:一类是以谷歌的GFS和MapReduce为代表的大规模分布式并行计算技术;另一类是以亚马逊的虚拟机和对象存储为代表的“按需租用”的商业模式。但是,随着大数据概念的提出,云计算中的分布式计算技术开始更多地被列入大数据技术,而人们提到云计算时,更多指的是底层基础IT资源的整合优化以及以服务的方式提供IT资源的商业模式(如IaaS、PaaS、SaaS)。从云计算和大数据概念的诞生到现在,二者之间的关系非常微妙,既密不可分,又千差万别。因此,我们不能把云计算和大数据割裂开来作为截然不同的两类技术来看待。此外,物联网也是和云计算、大数据相伴相生的技术。第一,大数据、云计算和物联网的区别。大数据侧重于
13、对海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活;云计算本质上旨在整合和优化各种IT资源并通过网络以服务的方式,廉价地提供给用户;物联网的发展目标是实现物物相连,应用创新是物联网发展的核心。第二,大数据、云计算和物联网的联系。从整体上看,大数据、云计算和物联网这三者是相辅相成的。大数据根植于云计算,大数据分析的很多技术都来自于云计算,云计算的分布式数据存储和管理系统(包括分布式文件系统和分布式数据库系统)提供了海量数据的存储和管理能力,分布式并行处理框架MapReduce提供了海量数据分析能力,没有这些云计算技术作为支撑,大数据分析就无从谈起。反之,大数据为云计算提供了“用
14、武之地”,没有大数据这个“练兵场”,云计算技术再先进,也不能发挥它的应用价值。物联网的传感器源源不断产生的大量数据,构成了大数据的重要数据来源,没有物联网的飞速发展,就不会带来数据产生方式的变革,即由人工产生阶段转向自动产生阶段,大数据时代也不会这么快就到来。同时,物联网需要借助于云计算和大数据技术,实现物联网大数据的存储、分析和处理。可以说,云计算、大数据和物联网三者已经彼此渗透、相互融合,在很多应用场合都可以同时看到三者的身影。在未来,三者会继续相互促进、相互影响,更好地服务于社会生产和生活的各个领域。物联网产业支持政策2013年2月国务院印发国务院关于推进物联网有序健康发展的指导意见,指
15、出:到2015年在工业、农业、节能环保、商贸流通、交通能源、公共安全、社会事业、城市管理、安全生产、国防建设等领域实现物联网试点示范应用,部分领域的规模化应用水平显著提升,培育一批物联网应用服务优势企业。以掌握原理实现突破性技术创新为目标,把握技术发展方向,围绕应用和产业急需,明确发展重点,加强低成本、低功耗、高精度、高可靠、智能化传感器的研发与产业化,着力突破物联网核心芯片、软件、仪器仪表等基础共性技术,加快传感器网络、智能终端、大数据处理、智能分析、服务集成等关键技术研发创新,推进物联网与新一代移动通信、云计算、下一代互联网、卫星通信等技术的融合发展。充分利用和整合现有创新资源,形成一批物
16、联网技术研发实验室、工程中心、企业技术中心,促进应用单位与相关技术、产品和服务提供商的合作,加强协同攻关,突破产业发展瓶颈。2013年9月国家发改委同多部委印发了物联网发展专项行动计划(2013-2015)。其中包含了顶层设计、标准制定、技术研发、应用推广、产业支撑、商业模式、安全保障、政府扶持、法律法规、人才培养10个专项行动计划。各个专项计划从各自角度,对2015年物联网行业将要达到的总体目标作出了规定。2017年1月国家发改委印发物联网十三五发展规划其中指出:到2020年,具有国际竞争力的物联网产业体系基本形成,包含感知制造、网络传输、智能信息服务在内的总体产业规模突破1.5万亿元,智能
17、信息服务的比重大幅提升。推进物联网感知设施规划布局,公众网络M2M连接数突破17亿。物联网技术研发水平和创新能力显著提高,适应产业发展的标准体系初步形成,物联网规模应用不断拓展,泛在安全的物联网体系基本成型。打造10个具有特色的产业集聚区,培育和发展200家左右产值超过10亿元的骨干企业,以及一批“专精特新”的中小企业和创新载体,建设一批覆盖面广、支撑力强的公共服务平台,构建具有国际竞争力的产业体系。2017年6月工信部印发关于全面推进移动物联网(NB-IoT)建设发展的通知,指出:到2020年,NB-IoT网络实现全国普遍覆盖,面向室内、交通路网、地下管网等应用场景实现深度覆盖,基站规模达到150万个。加强物联网平台能力建设,支持海量终端接入,提升大数据运营能力。2018年12月工信部印发车联网(智能网联汽车)产业发展行动计划,指出:到2020年,实现车联网(智能网联汽车)产业跨行业融合取得突破,具备高级别自动驾驶功能的智能网联汽车实现特定场景规模应用,车联网综合应用体系基本构建,用户渗透率大幅提高,智能道路基础设施水平明显提升,适应产业发展的政策法规、标准规范和安全保障体系初步建立,开放融合、创新发展的产业生态基本形成,满足人民群众多样化、个性化、不断升级的消费需求。