中考数学压轴题的技巧-例题解析.docx

上传人:知****量 文档编号:77781032 上传时间:2023-03-16 格式:DOCX 页数:6 大小:453.03KB
返回 下载 相关 举报
中考数学压轴题的技巧-例题解析.docx_第1页
第1页 / 共6页
中考数学压轴题的技巧-例题解析.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《中考数学压轴题的技巧-例题解析.docx》由会员分享,可在线阅读,更多相关《中考数学压轴题的技巧-例题解析.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、中考数学冲刺复习资料:二次函数压轴题(1)求抛物线的解析式(2)点M是线段BC上的点(不与B,C重合),过M作MNy轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长(3)在(2)的条件下,连接NB、NC,是否存在m,使BNC的面积最大?若存在,求m的值;若不存在,说明理由考点:二次函数综合题菁优网版权所有专题:压轴题;数形结合分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长(3)设MN交x轴于D,

2、那么BNC的面积可表示为:SBNC=SMNC+SMNB=MN(OD+DB)=MNOB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于SBNC、m的函数关系式,根据函数的性质即可判断出BNC是否具有最大值解答:解:(1)设抛物线的解析式为:y=a(x+1)(x3),则:a(0+1)(03)=3,a=1;抛物线的解析式:y=(x+1)(x3)=x2+2x+3(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=x+3已知点M的横坐标为m,MNy,则M(m,m+3)、N(m,m2+2m+3);故MN=m2+2m+3(m+3)=m2+3m(0m3)(3)如图;SBN

3、C=SMNC+SMNB=MN(OD+DB)=MNOB,SBNC=(m2+3m)3=(m)2+(0m3);当m=时,BNC的面积最大,最大值为2如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标考点:二次函数综合题菁优网版权所有专题:压轴题;转化思想分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)首先根据抛物线的解析式确定A点坐标,然后通过证明ABC是直角三角形来推导出直径A

4、B和圆心的位置,由此确定圆心坐标(3)MBC的面积可由SMBC=BCh表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a42,即:a=;抛物线的解析式为:y=x2x2(2)由(1)的函数解析式可求得:A(1,0)、C(0,2);OA=1,OC=2,OB=4,即:OC2=OAOB,又:OCAB,OACOCB,得:OCA=OBC;ACB=OCA+OCB=OBC+OCB=90,ABC为直角三角形,AB为ABC外接圆的直径;所以该外接圆的

5、圆心为AB的中点,且坐标为:(,0)(3)已求得:B(4,0)、C(0,2),可得直线BC的解析式为:y=x2;设直线lBC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2x2,即: x22x2b=0,且=0;44(2b)=0,即b=4;直线l:y=x4所以点M即直线l和抛物线的唯一交点,有:,解得:即 M(2,3)过M点作MNx轴于N,SBMC=S梯形OCMN+SMNBSOCB=2(2+3)+2324=4平行四边形类3如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,3),点P是直线AB上的动点,过点P作x轴的垂线交抛

6、物线于点M,设点P的横坐标为t(1)分别求出直线AB和这条抛物线的解析式(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求ABM的面积(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由考点:二次函数综合题;解一元二次方程-因式分解法;待定系数法求一次函数解析式;待定系数法求二次函数解析式;三角形的面积;平行四边形的判定菁优网版权所有专题:压轴题;存在型分析:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;

7、(2)设点P的坐标是(t,t3),则M(t,t22t3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t3)(t22t3)=t2+3t,然后根据二次函数的最值得到当t=时,PM最长为=,再利用三角形的面积公式利用SABM=SBPM+SAPM计算即可;(3)由PMOB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t22t3)(t3)=3;当P在第三象限:PM=OB=3,t23t=3,分别解一元二次方程即可得到满足条件的t的值解答:解:(1)把A(

8、3,0)B(0,3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x22x3设直线AB的解析式是y=kx+b,把A(3,0)B(0,3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x3;(2)设点P的坐标是(t,t3),则M(t,t22t3),因为p在第四象限,所以PM=(t3)(t22t3)=t2+3t,当t=时,二次函数的最大值,即PM最长值为=,则SABM=SBPM+SAPM=(3)存在,理由如下:PMOB,当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3当P在第一象限:PM=OB=3,(

9、t22t3)(t3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;当P在第三象限:PM=OB=3,t23t=3,解得t1=(舍去),t2=,所以P点的横坐标是所以P点的横坐标是或4如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90,得到ABO(1)一抛物线经过点A、B、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PBAB的面积是ABO面积4倍?若存在,请求出P的坐标;若不存在,请说明理由(3)在(2)的条件下,试指出四边形PBAB是哪种形状的四边形?并写出四边形PBAB的两条性质考点:二次函数综合题菁优网版权所有专题:压轴题分析:(1)利用旋转的性质得出A(1,0),B(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S四边形PBAB=SBOA+SPBO+SPOB,再假设四边形PBAB的面积是ABO面积的4倍,得出一元二次方程,得出P点坐标即可;

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁