人教部初三九年级数学上册-用待定系数法求二次函数解析式-名师教学PPT课件.pptx

上传人:可****阿 文档编号:77769958 上传时间:2023-03-16 格式:PPTX 页数:30 大小:427.28KB
返回 下载 相关 举报
人教部初三九年级数学上册-用待定系数法求二次函数解析式-名师教学PPT课件.pptx_第1页
第1页 / 共30页
人教部初三九年级数学上册-用待定系数法求二次函数解析式-名师教学PPT课件.pptx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《人教部初三九年级数学上册-用待定系数法求二次函数解析式-名师教学PPT课件.pptx》由会员分享,可在线阅读,更多相关《人教部初三九年级数学上册-用待定系数法求二次函数解析式-名师教学PPT课件.pptx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、抛物线抛物线 开口方向开口方向 对称轴对称轴 顶点坐标顶点坐标 y=ax2(a0)y=ax2+k(a0)y=a(x-h)2(a0)y=a(x-h)2+k(a0)y=ax2+bx+c(a0)填写表格:小结归纳小结归纳 温故知新温故知新回顾:用待定系数法求解析式回顾:用待定系数法求解析式已知一次函数经过点(已知一次函数经过点(1,3)和()和(-2,-12),求),求这个一次函数的解析式。这个一次函数的解析式。解:设这个一次函数的解析式为解:设这个一次函数的解析式为y=kx+b,因为一次函数经过点因为一次函数经过点(1,3)和()和(-2,-12),),所以所以k+b=3-2k+b=-12解得解得

2、 k=3,b=-6一次函数的解析式为一次函数的解析式为y=3x-6.温故知新温故知新一、设一、设二、代二、代三、解三、解四、还原四、还原用待定系数法求函数的解析式的一般步骤用待定系数法求函数的解析式的一般步骤 温故知新温故知新抛物线解析式抛物线解析式抛物线与抛物线与x轴交点坐标轴交点坐标(x1,0),(,0),(x2,0),0)y=2(2(x-1 1)()(x-4 4)y=3(3(x-2 2)()(x+5+5)y=-5(5(x+4+4)()(x+6+6)-x1-x2求出下表中抛物线与x轴的交点坐标,看看你有什么发现?轴的交点坐标,看看你有什么发现?(1,0)()(4,0)(2,0)()(-5,

3、0)(-4,0)()(-6,0)(x1,0),(,0),(x2,0),0)y=a(x_)()(x_)(a0 0)交点式交点式人教版九年级上册人教版九年级上册例例1 已知一个二次函数的图象过点(已知一个二次函数的图象过点(1,10)、)、(1,4)、()、(2,7)三点,求这个函数的解析式)三点,求这个函数的解析式解:设所求的二次函数为解:设所求的二次函数为y=ax2+bx+c由条件得:由条件得:a-b+c=10a+b+c=44a+2b+c=7解方程组得:解方程组得:a=2,b=-3,c=5因此:所求二次函数是:因此:所求二次函数是:y=2x2-3x+5待定系数法待定系数法已知抛物线上任意三点时

4、,已知抛物线上任意三点时,通常设为一般式通常设为一般式 一般式一般式:练习练习1:已知关于已知关于x的二次函数的二次函数,当当x=1时时,函数函数值为值为10,当当x=1时时,函数值为函数值为4,当当x=2时时,函数值为函数值为7,求这个二次函数的解析试求这个二次函数的解析试.求二次函数求二次函数y=ax2+bx+c的解析式,关键是求的解析式,关键是求出待定系数出待定系数a,b,c的值。的值。由已知条件(如二次函数图像上三个点的由已知条件(如二次函数图像上三个点的坐标)列出关于坐标)列出关于a,b,c的方程组,并求出的方程组,并求出a,b,c,就可以写出二次函数的解析式。就可以写出二次函数的解

5、析式。用待定系数法求二次函数的解析式用待定系数法求二次函数的解析式已知抛物线的顶点与已知抛物线的顶点与抛物线上另一点时,抛物线上另一点时,通常设为顶点式通常设为顶点式例例2:已知抛物线的顶点是(:已知抛物线的顶点是(1,2)且过)且过点(点(2,3),求出对应的二次函数解析式,求出对应的二次函数解析式又过点(又过点(2,3)a(2-1)2+2=3,a=1解:设所求的二次函数为解:设所求的二次函数为y=a(x-h)2+k顶点是(顶点是(1,2)y=a(x-1)2+2,y=(x-1)2+2,即,即y=x2-2x+3顶点式顶点式 :练习:练习:1、已知二次函数的图象经过点、已知二次函数的图象经过点(

6、4,3),并且当),并且当x=3时有最大值时有最大值4,求出对应的二次函数解析式;求出对应的二次函数解析式;已知条件中的当已知条件中的当x=3x=3时有最大值时有最大值4 4也就是抛物线的顶点坐标为(也就是抛物线的顶点坐标为(3,43,4),),所以设为顶点式较方便所以设为顶点式较方便y=-7(x-3)y=-7(x-3)2 2+4+4也就也就y=-7xy=-7x2 2+42x-59+42x-59顶点式顶点式y=a(x-h)2+k(a、h、k为常数为常数a0).1.若已知抛物线的顶点坐标和抛物线上的另若已知抛物线的顶点坐标和抛物线上的另一个点的坐标时,通过设函数的解析式为顶点式一个点的坐标时,通

7、过设函数的解析式为顶点式y=a(x-h)2+k.2.特别地,当抛物线的顶点为原点是,特别地,当抛物线的顶点为原点是,h=0,k=0,可设函数的解析式为可设函数的解析式为y=ax2.3.当抛物线的对称轴为当抛物线的对称轴为y轴时,轴时,h=0,可设函可设函数的解析式为数的解析式为y=ax2+k.4.当抛物线的顶点在当抛物线的顶点在x轴上时,轴上时,k=0,可设函,可设函数的解析式为数的解析式为y=a(x-h)2.已知已知抛物线与抛物线与x x轴的交点轴的交点或交点横坐标时,通常或交点横坐标时,通常设为交点式(两根式)设为交点式(两根式)例例3 3:已知抛物线与:已知抛物线与x x轴两交点横坐标为

8、轴两交点横坐标为1 1,3 3且图像过(且图像过(0 0,-3-3),求出对应的二次函),求出对应的二次函数解析式。数解析式。解:设所求的二次函数为解:设所求的二次函数为y=a(x-x1)(x-x2)由抛物线与由抛物线与x x轴两交点横坐标为轴两交点横坐标为1 1,3 3,y=a(x-1)(x-3),又过(又过(0 0,-3-3),),a(0-1)(0-3)=-3,a=-1a=-1 y=-(x-1)(x-3),y=-(x-1)(x-3),即即y=-xy=-x2 2+4x-3+4x-3交点式交点式 :练习:已知二次函数练习:已知二次函数yax2bxc的图的图象过象过A(0,5),B(5,0)两点

9、,它的对两点,它的对称轴为直线称轴为直线x2,那么这个二次函数的,那么这个二次函数的解析式是解析式是 。分析:因为抛物线与分析:因为抛物线与x x轴的两个交点关于轴的两个交点关于抛物线的对称轴对称,又抛物线的对称轴对称,又B(5B(5,0)0)关于直线关于直线x x2 2的对称点坐标为(的对称点坐标为(-1,0-1,0),所以可以),所以可以设为交点式,类似例设为交点式,类似例3 3求解,当然也可以按求解,当然也可以按一般式求解。一般式求解。y=(x-5)(x+1),y=(x-5)(x+1),即即y=xy=x2 2-4x-5-4x-5 温故知新温故知新二次函数常用的几种解析式二次函数常用的几种

10、解析式一般式一般式 y=axy=ax2 2+bx+c +bx+c (a a0)0)顶点式顶点式 y=ay=a(x-hx-h)2 2+k +k (a a0)0)交点式交点式 y=ay=a(x-xx-x1 1)()(x-xx-x2 2)()(a a0)0)用待定系数法确定二次函数的解析式时,用待定系数法确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式。应该根据条件的特点,恰当地选用一种函数表达式。拓展提高拓展提高6 根据下列二次函数的图象根据下列二次函数的图象,写出图象所对应写出图象所对应的函数关系式的函数关系式 同步练习同步练习1 1、有一个抛物线形的立交桥拱,这个桥拱的最大

11、有一个抛物线形的立交桥拱,这个桥拱的最大高度为高度为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系现把它的图形放在坐标系里里(如图所示如图所示),求抛物线的解析式,求抛物线的解析式 解:设抛物线的解析式为解:设抛物线的解析式为y=ax2bxc,根据题意可知根据题意可知抛物线经过抛物线经过(0,0),(20,16)和和(40,0)三点三点 可得方程组可得方程组 通过利用给定的条件通过利用给定的条件列出列出a、b、c的三元的三元一次方程组,求出一次方程组,求出a、b、c的值,从而确定的值,从而确定函数的解析式过程函数的解析式过程较繁杂,较繁杂,评价评价 同步练习同步练习设抛物线为设

12、抛物线为y=a(x-20)216 解:解:根据题意可知根据题意可知 点点(0,0)在抛物线上,在抛物线上,通过利用条件中的顶点通过利用条件中的顶点和过原点选用顶点式求和过原点选用顶点式求解,方法比较灵活解,方法比较灵活 评价评价 所求抛物线解析式为所求抛物线解析式为 1 1、有一个抛物线形的立交桥拱,这个桥拱的最大有一个抛物线形的立交桥拱,这个桥拱的最大高度为高度为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系现把它的图形放在坐标系里里(如图所示如图所示),求抛物线的解析式,求抛物线的解析式 同步练习同步练习设抛物线为设抛物线为y=ax(x-40)解:解:根据题意可知根据题意可

13、知 点点(20,16)在抛物线上,在抛物线上,选用两根式求解,方法选用两根式求解,方法灵活巧妙,过程也较简灵活巧妙,过程也较简捷捷 评价评价1 1、有一个抛物线形的立交桥拱,这个桥拱的最大有一个抛物线形的立交桥拱,这个桥拱的最大高度为高度为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系现把它的图形放在坐标系里里(如图所示如图所示),求抛物线的解析式,求抛物线的解析式 拓展提高拓展提高1 1、已知一个二次函数的图象过点(、已知一个二次函数的图象过点(0,-30,-3)(4,54,5)对称轴为直线对称轴为直线x=1x=1,求这个函数的,求这个函数的解析式?解析式?解:设所求的二次函

14、数为解:设所求的二次函数为y=ax2+bx+cc=-3 16a+4b+c=0ab2-=1依题意得依题意得 拓展提高拓展提高2、如图,直角、如图,直角ABC的两条直角边的两条直角边OA、OB的长分别是的长分别是1和和3,将,将AOB绕绕O点按逆时点按逆时针方向旋转针方向旋转90,至,至DOC的位置,求过的位置,求过C、B、A三点的二次函数解析式。三点的二次函数解析式。CAOBDxy(1,0)(0,3)(-3,0)拓展提高拓展提高4 4、一次函数、一次函数y=x-2y=x-2与二次函数与二次函数y=axy=ax2 2+bx+c+bx+c的的图象交于图象交于A(2,m)A(2,m)和和B(n,3)B

15、(n,3)两点,且抛物线两点,且抛物线的对称轴是的对称轴是X=3X=3,求二次函数的关系式?,求二次函数的关系式?AB0Xy拓展提高拓展提高10m3m6m5 5、在一次足球比赛中,一球员从球门正前方、在一次足球比赛中,一球员从球门正前方1010米处将球米处将球射向球门,当球飞行的水平距离为米时,球到达最高射向球门,当球飞行的水平距离为米时,球到达最高点米若球运行的路线为抛物线,点米若球运行的路线为抛物线,()试建立坐标式()试建立坐标式,求出该抛物线的二次函数关系式?求出该抛物线的二次函数关系式?()若球门()若球门ABAB高高2.442.44米,问:球员能否射中球门米,问:球员能否射中球门?

16、说明理由?说明理由应用:已知二次函数应用:已知二次函数yax2+bx+c(a0)的图)的图象象 如图所示如图所示:(1)求函数解析式求函数解析式(2)求四边形求四边形OBCD的面积的面积o oBBCCDD1 13 34 4把把把把x=3x=3,y=0 y=0 代入解析式得代入解析式得代入解析式得代入解析式得0=4a0=4a44a=1a=1y=y=(x-1x-1)2 2 44解:由图知顶点坐标(解:由图知顶点坐标(解:由图知顶点坐标(解:由图知顶点坐标(11,-4-4),图象),图象),图象),图象 经过经过经过经过DD点(点(点(点(33,00)x xy y 设函数解析式为设函数解析式为设函数

17、解析式为设函数解析式为y=ay=a(x-1x-1)22 4 4求不规则的四边形的面积通常利用求不规则的四边形的面积通常利用求不规则的四边形的面积通常利用求不规则的四边形的面积通常利用“化归思想化归思想化归思想化归思想”把它转化成三角形和特殊的四边形的面积进行求把它转化成三角形和特殊的四边形的面积进行求把它转化成三角形和特殊的四边形的面积进行求把它转化成三角形和特殊的四边形的面积进行求解解解解(2)(2)求四边形求四边形求四边形求四边形OBCDOBCD的面积的面积的面积的面积y=y=(x-1x-1)2 2 44o oBBCCDD1 13 3x xy y-4-4y=y=(x-1x-1)2 2 44

18、令令令令x=0 x=0代入代入代入代入 y=-3 y=-3 BB(00,-3-3)OB=OB=-3 =3-3 =3GGE E4 4 =OBGC +ODEC =OBGC +ODEC=22112211221515连结连结连结连结OCOC设法利用点的坐标表示相关线设法利用点的坐标表示相关线设法利用点的坐标表示相关线设法利用点的坐标表示相关线段的长,注意带上绝对值段的长,注意带上绝对值段的长,注意带上绝对值段的长,注意带上绝对值o oBBCC1 13 3x xy yEEDDGGS S四边形四边形四边形四边形OBCDOBCD=S SOBCOBC+S+SOCDOCDEE(11,00)DD(33,00)CC

19、(11,-4-4)OE=GC=1 OE=GC=1 ,OD=3 OD=3 ,ED=OD-OE=2 ED=OD-OE=2 ,EC=EC=-4 =4-4 =4y=y=(x-1x-1)2 42 4令令令令x=0 x=0代入代入代入代入 y=-3 y=-3 B B(0 0,-3-3)OB=3OB=3=(OB+EC)OE+ED*EC=EE(11,00)DD(33,00)CC(11,-4-4)OE=1 OE=1 ,OD=3 OD=3 ,ED=OD-OE=2 ED=OD-OE=2 ,EC=4EC=411221122221515o oBBCCDD3 3x xy yEE-4-41 1S S四边形四边形四边形四边形

20、OBCDOBCD=S S梯形梯形梯形梯形OBCEOBCE+S+SECDECDy=y=(x-1x-1)2 42 4令令令令x=0 x=0代入代入代入代入 y=-3 y=-3 B B(0 0,-3-3)OB=3OB=3S四边形四边形OBCD =S矩形矩形OGHD S GCB S CHD=-4-4GGy=y=(x-1x-1)2 2 44令令令令x=0 x=0代入代入代入代入 y=-3 y=-3 BB(00,-3-3)OB=3OB=3 EE(11,00)DD(33,00)CC(11,-4-4)OE=1 OE=1 ,OD=3 OD=3 ,ED=OD-OE=2 ED=OD-OE=2 ,EC=4EC=4 O

21、G=EC=DH=4OG=EC=DH=4,GC=OE=1GC=OE=1,GB=1GB=1,CH=ED=2CH=ED=2HH过过过过DD点作点作点作点作DHDHxx轴,交轴,交轴,交轴,交GCGC的延长线于的延长线于的延长线于的延长线于HH点点点点221515o oBB1 13 3x xy yEEDDCCEE(11,00)DD(33,00)CC(11,-4-4)OE=1 OE=1 ,OD=3 OD=3 ,OG=EC=4 OG=EC=4,GB=1GB=1 OG=EC=4OG=EC=4,GC=OE=1GC=OE=1,S S四边形四边形四边形四边形OBCD =OBCD =S S梯形梯形梯形梯形OGCDO

22、GCD S SGCBGCB=(GC+ODGC+OD)OGOG GCGBGCGB=22151511221122o oBBCCDD1 13 3x xy y-4-4GGEEy=y=(x-1x-1)2 42 4令令令令x=0 x=0代入代入代入代入 y=-3 y=-3 B B(0 0,-3-3)OB=3OB=3o oBBCCDD1 13 34 4x xy y 小结归纳小结归纳已知三个点坐标三对对应值,选择一般式已知三个点坐标三对对应值,选择一般式已知顶点坐标或对称轴或最值,选择顶点式已知顶点坐标或对称轴或最值,选择顶点式 已知抛物线与已知抛物线与x x轴的两交点坐标,选择交点式轴的两交点坐标,选择交点式二次函数常用的几种解析式二次函数常用的几种解析式一般式一般式 y=axy=ax2 2+bx+c +bx+c (a a0)0)顶点式顶点式 y=ay=a(x-hx-h)2 2+k +k (a a0)0)交点式交点式 y=ay=a(x-xx-x1 1)()(x-xx-x2 2)()(a a0)0)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁