第四章多变量控制系统精选文档.ppt

上传人:石*** 文档编号:77745965 上传时间:2023-03-16 格式:PPT 页数:59 大小:6.23MB
返回 下载 相关 举报
第四章多变量控制系统精选文档.ppt_第1页
第1页 / 共59页
第四章多变量控制系统精选文档.ppt_第2页
第2页 / 共59页
点击查看更多>>
资源描述

《第四章多变量控制系统精选文档.ppt》由会员分享,可在线阅读,更多相关《第四章多变量控制系统精选文档.ppt(59页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第四章多变量控制系第四章多变量控制系统统本讲稿第一页,共五十九页TITO过程的闭环阶跃测试过程的闭环阶跃测试本讲稿第二页,共五十九页Decentralized Scheme TITO过程的闭环阶跃测试过程的闭环阶跃测试本讲稿第三页,共五十九页一般一般MIMO过程的辨识过程的辨识MIMO系统结构控制信号的定义系统分解本讲稿第四页,共五十九页辨识系统参数的方法独立单回路测试:结构简单,计算量少,对扰动敏感分散继电器测试:闭合回路,对扰动不敏感,不易得到极限环,建模困难开环阶跃测试:叠加原理一般一般MIMO过程的辨识过程的辨识本讲稿第五页,共五十九页过程控制系统的基本概念给定一个过程控制系统能够正确

2、选择被控对象,被控变量,操纵变量,能够正确画出系统的框图根据控制目标选择合适的控制规律控制器参数整定验证性能评估指标复杂过程控制非最小相位系统系统参数已知系统参数未知本讲稿第六页,共五十九页第四章第四章 多变量控制系统多变量控制系统本讲稿第七页,共五十九页HighlightsWhats MIMO systemsWhy we study MIMO systemsHow to design for MIMO systems本讲稿第八页,共五十九页4.1 多变量系统的基础概念多变量系统的基础概念单入单出系统(SISO):多输入多输出系统(MIMO):n=m:n=m:方系统;方系统;nm:nm:瘦系统

3、;瘦系统;nm:nm:胖系统胖系统多变量系统的结构特点本讲稿第九页,共五十九页4.1 多变量系统的基础概念多变量系统的基础概念多变量系统的模型特点多变量系统传递函数矩阵:单变量系统传递函数:本讲稿第十页,共五十九页多变量系统的定义具有多个输入量或输出量的系统,又称多输入多输出系统。MIMO系统特有的一些问题强关联性可行性能控性和能观性抗干扰性4.1 多变量系统的基础概念多变量系统的基础概念本讲稿第十一页,共五十九页4.2 MIMO系统的稳定性分析系统的稳定性分析MIMO传递函数模型为其中本讲稿第十二页,共五十九页4.2 MIMO系统的稳定性分析系统的稳定性分析MIMO状态空间模型为进行Lapl

4、ace变化可得:本讲稿第十三页,共五十九页稳定性分析:状态空间形式的MIMO系统是开环稳定的,当且仅当矩阵A的所有特征值有负实部。MIMO系统的传递函数矩阵的所有极点都在左半平面,系统是稳定的4.2 MIMO系统的稳定性分析系统的稳定性分析uMIMO系统的极点是每一个传递函数元素的所有极点的集合uMIMO系统的零点是传递函数倒数的极点方多变量系统的零点就是传递函数矩阵行列式的零点非方多变量系统的零点定义为使传递函数降秩的s的值本讲稿第十四页,共五十九页4.2 MIMO系统的稳定性分析系统的稳定性分析选取控制器Gc(s),可得MIMO的闭环传递函数矩阵为:SISOMIMO极点为极点为回差矩阵多项

5、式的根本讲稿第十五页,共五十九页4.3 耦合测度与配对规则耦合测度与配对规则一组SISO本讲稿第十六页,共五十九页耦合测度4.3 耦合测度与配对规则耦合测度与配对规则耦合测度衡量u1和y1的关联程度本讲稿第十七页,共五十九页4.3 耦合测度与配对规则耦合测度与配对规则本讲稿第十八页,共五十九页相对增益矩阵序列(相对增益矩阵序列(Relative Gain ArrayRelative Gain Array):):4.3 耦合测度与配对规则耦合测度与配对规则若第j个输入与第i个输出配对,ij是第i个回路的稳态耦合的一个测度本讲稿第十九页,共五十九页NO!NO!NO!NO!4.3 耦合测度与配对规则

6、耦合测度与配对规则本讲稿第二十页,共五十九页当通道的相对增益接近于1,例如0.8 ij 1.2,则表明其它通道对该通道的关联作用很小;无需进行解耦系统设计。当相对增益小于零或接近于零时,说明使用本通道调节器不能得到良好的控制效果。或者说,这个通道的变量选配不适当,应重新选择。当相对增益0.3ij0.7或ij1.5时,则表明系统中存在着非常严重的耦合。需要考虑进行解耦设计或采用多变量控制系统设计方法。4.3 耦合测度与配对规则耦合测度与配对规则本讲稿第二十一页,共五十九页4.3 耦合测度与配对规则耦合测度与配对规则本讲稿第二十二页,共五十九页Niederlinski 指数(NI):4.3 耦合测

7、度与配对规则耦合测度与配对规则附加规则:对TITO系统是充要条件对高阶系统是充分条件适用于具有有理传递函数元素的系统,时延系统当慎用本讲稿第二十三页,共五十九页基于基于RGA-NIRGA-NI的多变量系统回路配对规则:的多变量系统回路配对规则:1.给定G(s),计算稳态增益矩阵 K,RGA()和NI指数;2.根据 元素接近1的程度,得到试探性的回路配对方案;3.验证NI指数的正负,如果NI为正,则控制结构稳定,反之,选择其他方案。4.3 耦合测度与配对规则耦合测度与配对规则本讲稿第二十四页,共五十九页例4.1 33多变量系统,其稳态增益矩阵为:于是,回路配对方案初选为:1-1/2-2/3-34

8、.3 耦合测度与配对规则耦合测度与配对规则本讲稿第二十五页,共五十九页4.3 耦合测度与配对规则耦合测度与配对规则因此,回路配对方案经验证后终选为:1-1/2-3/3-2本讲稿第二十六页,共五十九页如何配对?例4.2 传递函数为4.3 耦合测度与配对规则耦合测度与配对规则答案:1-1/2-4/3-3/4-2本讲稿第二十七页,共五十九页其他系统的配对非线性系统的回路配对带积分环节的系统回路配对非方系统的回路配对时间解耦无过程模型的回路配对4.3 耦合测度与配对规则耦合测度与配对规则本讲稿第二十八页,共五十九页耦合:耦合:控制变量与被控变量之间是相互影响的,一个控控制变量与被控变量之间是相互影响的

9、,一个控制变量的改变同时引起几个被控变量变换的现象。制变量的改变同时引起几个被控变量变换的现象。解耦:解耦:消除系统之间的相互耦合,使各系统称为独消除系统之间的相互耦合,使各系统称为独立的互不相关的控制回路。立的互不相关的控制回路。把具有相互关联的多参数控制过程转化为几个彼此把具有相互关联的多参数控制过程转化为几个彼此独立的单输入独立的单输入-单输出控制过程来处理,实现一个调单输出控制过程来处理,实现一个调节器只对其对应的被控过程独立地进行调节。这样节器只对其对应的被控过程独立地进行调节。这样的系统称为的系统称为解耦控制系统解耦控制系统(或自治控制系统)。(或自治控制系统)。4.4 MIMO系

10、统的解耦设计系统的解耦设计本讲稿第二十九页,共五十九页解耦控制的目的解耦控制的目的解耦系统的目的是寻求适当的控制律,使输入输出相互关联的多变量系统实现每一个输出仅受相应的一个输入所控制,每一个输入也仅能控制相应的一个输出,以此构成独立的单回路控制系统,获得满意的控制性能。解耦控制的先行工作解耦控制的先行工作控制变量与被控参数的配对部分解耦:即有选择性的解耦,在选择时可根据被控参数的相对重要性和被控参数的响应速度4.4 MIMO系统的解耦设计系统的解耦设计本讲稿第三十页,共五十九页4.4 MIMO系统的解耦设计系统的解耦设计本讲稿第三十一页,共五十九页主要设计方法:前馈补偿法对角矩阵法单位矩阵法

11、精馏塔温度控制方案系统图 控制系统方框图4.4 MIMO系统的解耦设计系统的解耦设计本讲稿第三十二页,共五十九页前馈解耦原理前馈解耦原理:使y1与uc2无关联;使y2与uc1无关联 前馈补偿法4.4 MIMO系统的解耦设计系统的解耦设计本讲稿第三十三页,共五十九页 前馈补偿法4.4 MIMO系统的解耦设计系统的解耦设计本讲稿第三十四页,共五十九页例题4.3 已知某系统传递函数矩阵为计算该系统的相对增益矩阵,试用前馈补偿进行解耦设计解:对象静态增益矩阵为对象相对增益矩阵为由系统的RGA可知:系统不能利用变量配进行减小系统耦合,需要采用解耦方法。4.4 MIMO系统的解耦设计系统的解耦设计本讲稿第

12、三十五页,共五十九页 对角矩阵法4.4 MIMO系统的解耦设计系统的解耦设计本讲稿第三十六页,共五十九页 对角矩阵法Gc1(s)Gc2(s)G11(s)G22(s)y1y2 c c2 2 c c1 1r2r1+4.4 MIMO系统的解耦设计系统的解耦设计本讲稿第三十七页,共五十九页 单位矩阵法4.4 MIMO系统的解耦设计系统的解耦设计本讲稿第三十八页,共五十九页4.5 MIMO系统的分散控制系统的分散控制分散控制系统的构成分散控制系统的构成!一般适用于回路之间耦合较轻的情况,且选择最佳的回路配对方案。(以对角线配对方式为例)n对角线配对方式本讲稿第三十九页,共五十九页4.5 MIMO系统的分

13、散控制系统的分散控制基本的多变量控制方法协调或集中式控制:用一个控制算法同时计算出所有的操纵变量多回路控制:多个单回路控制器控制MIMO系统适当地进行回路配对推导出多回路反馈控制系统的传函,并确定与单回路控制的主要区别对每个单回路进行控制器参数调整本讲稿第四十页,共五十九页4.5 MIMO系统的分散控制系统的分散控制以TITO为例:回路1:u1-y1令TITO系统TITO系统的分解摄动项关联项无关联项回路1的关联作用只依赖于控制器2,有助于分析整定控制器2对回路1的影响本讲稿第四十一页,共五十九页采用同样的方法可以分析回路2:u2-y24.5 MIMO系统的分散控制系统的分散控制通过考察无关联

14、、完全关联和摄动项的频域响应来分析关联及其对闭环系统的影响,特别是,在频域范围内的相对幅值的变化。本讲稿第四十二页,共五十九页4.5 MIMO系统的分散控制系统的分散控制MIMO分散控制的关联单回路其中aij(s)是关联项,dij(s)是摄动项,gij(s)是无关联项本讲稿第四十三页,共五十九页4.5 MIMO系统的分散控制系统的分散控制例4.4:求如下TITO过程分散控制结构下的闭环传递函数本讲稿第四十四页,共五十九页4.5 MIMO系统的分散控制系统的分散控制若两个关联项G12(s)和G21(s)都不为0,单回路控制器Yi(s)和Ui(s)之间的动态响应依赖于闭环传递函数的所有项,所以两个

15、控制器必须同时调整以达到期望的稳定性和性能要求。本讲稿第四十五页,共五十九页4.5 MIMO系统的分散控制系统的分散控制多回路控制器设计方法试凑-误差法最优化方法RGA失调因子法修正Z-N法独立设计法基于等价传递函数(ETF)的方法本讲稿第四十六页,共五十九页RGA失调因子法-以TITO系统为例4.5 MIMO系统的分散控制系统的分散控制其中为动态RGA(DRGA)。本讲稿第四十七页,共五十九页(1)回路1的动态特性比回路2快(2)回路1的动态特性比回路2慢(3)回路1和2具有相同的动态特性其中4.5 MIMO系统的分散控制系统的分散控制为分析回路1与回路2的动态特性,TITO的闭环传函除以1

16、+Gc2(s)G22(s),得到本讲稿第四十八页,共五十九页(4)回路1和回路2具有类似的动态特性失调因子为4.5 MIMO系统的分散控制系统的分散控制多回路控制器的增益为其中Kci*是根据单回路控制器的整定规则获得的每个控制器的初始整定值本讲稿第四十九页,共五十九页4.5 MIMO系统的分散控制系统的分散控制独立设计法分解的TITO过程本讲稿第五十页,共五十九页若G11(s)和G22(s)不包含不稳定的零点或纯滞后比L21(s)+L12(s)小,则若G11(s)和G22(s)包含不稳定的零点或纯滞后比L21(s)+L12(s)大,则4.5 MIMO系统的分散控制系统的分散控制不做回路近似情况

17、下如何设计分散控制器?本讲稿第五十一页,共五十九页4.5 MIMO系统的分散控制系统的分散控制基于增益和相角裕度(GPM)设计方法本讲稿第五十二页,共五十九页4.5 MIMO系统的分散控制系统的分散控制本讲稿第五十三页,共五十九页Am m kI kP kD2/4/4kDa1/4kDa2/4kD3/3/6kDa1/6kDa2/6kD43/8/8kDa1/8kDa2/8kD表表4.14.1典型的增益裕度和相角裕度值及对应典型的增益裕度和相角裕度值及对应PIDPID控制器参数控制器参数Am越大,响应曲线越平滑,响应时间越长!增益和相角裕度方法增益和相角裕度方法适用于适用于D/D/比较小的过程比较小的

18、过程4.5 MIMO系统的分散控制系统的分散控制本讲稿第五十四页,共五十九页例4.4 Wood-Berry二元蒸馏塔模型为设计一个分散控制器解:4.5 MIMO系统的分散控制系统的分散控制失调因子法:独立设计法:本讲稿第五十五页,共五十九页(I)(I)n采用解耦控制系统的结构采用解耦控制系统的结构 对角结构对角结构分散控制器分散控制器解耦器解耦器4.5 MIMO系统的分散控制系统的分散控制本讲稿第五十六页,共五十九页(II)(II)解耦控制器解耦控制器n4.5 MIMO系统的分散控制系统的分散控制本讲稿第五十七页,共五十九页例例4.44.4 Wood-Berry Wood-Berry 蒸馏塔问题蒸馏塔问题4.5 MIMO系统的分散控制系统的分散控制本讲稿第五十八页,共五十九页多变量系统的基本概念SISO与MIMO的结构区别SISO与MIMO的模型区别MIMO系统的稳定性分析多变量系统配对解耦合的步骤耦合测度与配对规则RGA、NI指数验证配对是否合理控制器设计与参数辨识解耦控制器:前馈补偿法、对角矩阵法、单位矩阵法分散控制器:RGA失调因子法,独立设计法等本章小结本章小结本讲稿第五十九页,共五十九页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁