《泰勒公式(泰勒中值定理)教学提纲.ppt》由会员分享,可在线阅读,更多相关《泰勒公式(泰勒中值定理)教学提纲.ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、目录 上页 下页 返回 结束 泰勒公式(泰勒中值定理)目录 上页 下页 返回 结束 1.求求 n 次近似多项式次近似多项式要求要求:故令则目录 上页 下页 返回 结束 2.余项估计余项估计令(称为余项),则有目录 上页 下页 返回 结束 目录 上页 下页 返回 结束 公式 称为 的 n+1 阶泰勒公式阶泰勒公式.公式 称为n+1 阶泰勒公式的拉格朗日余项拉格朗日余项.泰勒泰勒(Taylor)中值定理中值定理:阶的导数,时,有其中则当泰勒 目录 上页 下页 返回 结束 公式 称为n+1 阶泰勒公式的佩亚诺佩亚诺(Peano)余项余项.在不需要余项的精确表达式时,泰勒公式可写为注意到目录 上页 下
2、页 返回 结束 特例特例:(1)当 n=0 时,泰勒公式变为(2)当 n=1 时,泰勒公式变为给出拉格朗日中值定理可见误差目录 上页 下页 返回 结束 称为麦克劳林麦克劳林(Maclaurin)公式公式.则有在泰勒公式中若取则有误差估计式若在公式成立的区间上麦克劳林 由此得近似公式目录 上页 下页 返回 结束 二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式其中麦克劳林公式麦克劳林公式 目录 上页 下页 返回 结束 其中麦克劳林公式麦克劳林公式 目录 上页 下页 返回 结束 麦克劳林公式麦克劳林公式 类似可得其中目录 上页 下页 返回 结束 其中麦克劳林公式麦克劳林公式 目录 上页
3、 下页 返回 结束 已知其中因此可得麦克劳林公式麦克劳林公式 目录 上页 下页 返回 结束 三、泰勒公式的应用三、泰勒公式的应用1.在近似计算中的应用在近似计算中的应用 误差M 为在包含 0,x 的某区间上的上界.目录 上页 下页 返回 结束 例例1.计算无理数 e 的近似值,使误差不超过解解:已知令 x=1,得由于欲使由计算可知当 n=9 时上式成立,因此的麦克劳林公式为目录 上页 下页 返回 结束 2.利用泰勒公式求极限利用泰勒公式求极限例例2.求解解:由于用洛必达法则不方便!用泰勒公式将分子展到项,目录 上页 下页 返回 结束 3.利用泰勒公式证明不等式利用泰勒公式证明不等式例例3.证明证证:+目录 上页 下页 返回 结束 内容小结内容小结1.泰勒公式泰勒公式其中余项当时为麦克劳林公式麦克劳林公式.目录 上页 下页 返回 结束 2.常用函数的麦克劳林公式常用函数的麦克劳林公式 3.泰勒公式的应用泰勒公式的应用(1)近似计算(3)其他应用求极限,证明不等式 等.(2)利用多项式逼近函数 例如 目录 上页 下页 返回 结束 思考与练习思考与练习 计算解解:原式第四节 目录 上页 下页 返回 结束 此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢