《《套利定价理论》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《套利定价理论》PPT课件.ppt(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、现代投资组合理论与现代投资组合理论与投资分析投资分析套利定价模型套利定价模型(APM)(arbitrage pricing model)一、一个好的风险收益模型的构成一、一个好的风险收益模型的构成 要素要素在介绍不同的风险与收益模型之前,我们首先要在介绍不同的风险与收益模型之前,我们首先要探讨一下一个好的风险收益模型的构成要素。探讨一下一个好的风险收益模型的构成要素。一个好的风险收益模型应当包括如下内容:一个好的风险收益模型应当包括如下内容:(1)可以度量广义风险。无论是股票、债券还是)可以度量广义风险。无论是股票、债券还是房地产,既然它们在争夺既定数量的投资资金,房地产,既然它们在争夺既定数
2、量的投资资金,那么一个好的风险收益模型所提供的风险度量方那么一个好的风险收益模型所提供的风险度量方法就应当可以应用到各种投资标的之上,而不论法就应当可以应用到各种投资标的之上,而不论该投资标的是金融资产还是实物资产。该投资标的是金融资产还是实物资产。(2)能够区分需要补偿的风险和不需要补偿的风)能够区分需要补偿的风险和不需要补偿的风险。人们已经普遍接受的观点是:并不是所有的险。人们已经普遍接受的观点是:并不是所有的风险都能够获得补偿。因此,一个好的风险收益风险都能够获得补偿。因此,一个好的风险收益模型应当能够区分需要补偿的风险和不需要补偿模型应当能够区分需要补偿的风险和不需要补偿的风险,并对这
3、种区分作出合理的解释。的风险,并对这种区分作出合理的解释。(3)风险度量标准化,以便于分析和比较。风险)风险度量标准化,以便于分析和比较。风险总是一个相对的概念,一种好的风险度量方法应总是一个相对的概念,一种好的风险度量方法应当是标准化的,从而使投资者在使用该方法度量当是标准化的,从而使投资者在使用该方法度量投资项目的风险时可以识别出该项投资相对于其投资项目的风险时可以识别出该项投资相对于其它投资的风险程度。它投资的风险程度。(4)能将风险转化成期望收益率。度量风险的目)能将风险转化成期望收益率。度量风险的目的之一是估计投资项目的期望收益率。只有得到的之一是估计投资项目的期望收益率。只有得到期
4、望收益率才能判断出投资项目的优劣。一个模期望收益率才能判断出投资项目的优劣。一个模型如果仅仅能够指出高风险、高收益的一般原则,型如果仅仅能够指出高风险、高收益的一般原则,而不能提供具体的风险补偿溢价,那么它就不是而不能提供具体的风险补偿溢价,那么它就不是一个充分的模型。一个充分的模型。(5)行之有效。模型好坏的最终检验标准是看它)行之有效。模型好坏的最终检验标准是看它是否行之有效,也就是说它所度量出的风险与收是否行之有效,也就是说它所度量出的风险与收益在长时间内对于不同投资项目是否为正相关。益在长时间内对于不同投资项目是否为正相关。更强的检验是考察从长期的角度看投资的实际收更强的检验是考察从长
5、期的角度看投资的实际收益是否与模型得出的期望收益相一致。益是否与模型得出的期望收益相一致。二、二、CAPM的实证检验的实证检验资本资产定价模型是否行之有效,资本资产定价模型是否行之有效,值是否是风险值是否是风险的最好近似,它是否与期望收益正相关,对于这的最好近似,它是否与期望收益正相关,对于这些问题的回答一直是争论的焦点。些问题的回答一直是争论的焦点。根据根据CAPM理论,任何证券的理论,任何证券的 值与其期望收益率值与其期望收益率E(r)存在线性关系,而描述这一关系的直线称)存在线性关系,而描述这一关系的直线称为证券市场线。为证券市场线。由于直接检验市场组合的有效性十分困难,所以由于直接检验
6、市场组合的有效性十分困难,所以传统的检验者都把注意力集中到对传统的检验者都把注意力集中到对 值与期望收益值与期望收益率率E(r)线性关系的检验上。)线性关系的检验上。如如1972年年Black、Jensen和和Scholes以以1926年到年到1965年纽约股票交易所所有进行交易的股票为样年纽约股票交易所所有进行交易的股票为样本,利用双程回归技术检验本,利用双程回归技术检验 与与E(r)的线性相关)的线性相关性;性;1974年年Fama等人也通过对等人也通过对 与与E(r)是否具有线)是否具有线性关系来检验性关系来检验CAPM。这些检验方法都不同程度的证实了这些检验方法都不同程度的证实了CAP
7、M中的证中的证券市场线是一条具有正斜率的直线,这似乎从侧券市场线是一条具有正斜率的直线,这似乎从侧面验证了该理论。面验证了该理论。然而,然而,1977年,年,Roll在一篇有创见性的模型检验在一篇有创见性的模型检验评论中指出:既然市场投资组合永远不可能观察评论中指出:既然市场投资组合永远不可能观察到,那么资本资产定价模型就永远不会得到检验,到,那么资本资产定价模型就永远不会得到检验,而所有对该模型的检验都是对该模型及模型中市而所有对该模型的检验都是对该模型及模型中市场投资组合的联合检验。场投资组合的联合检验。近年来,近年来,Fama和和French(1992)又检验了)又检验了1963年到年到
8、1990年间年间 值与期望收益率的关系,与他在值与期望收益率的关系,与他在1974年得到的结论正好相反,发现这两者竟然毫年得到的结论正好相反,发现这两者竟然毫无关系。无关系。他们同时发现了另外两个变量他们同时发现了另外两个变量企业规模和帐企业规模和帐面市价比面市价比在解释公司收益率方面要比在解释公司收益率方面要比 值的效值的效果更好,因此它们可能是更好的风险度量。果更好,因此它们可能是更好的风险度量。这一结果在两方面引起了争论。首先,这一结果在两方面引起了争论。首先,Amihud、Christensen和和Mendelson(1992)用同样的数)用同样的数据,但不同的检验方法,得出了据,但不
9、同的检验方法,得出了 值在解释收益方值在解释收益方面具有有效性。其次,面具有有效性。其次,Chan和和Lakonishok(1993)使用了)使用了1926年到年到1991年更年更长时期的数据,发现在长时期的数据,发现在1982年以后,年以后,值与收益值与收益率的正相关关系开始减弱。率的正相关关系开始减弱。他们将这一结果归因于所选取的标准普尔他们将这一结果归因于所选取的标准普尔500股票股票指数中包含了大量低指数中包含了大量低 值的股票,而高值的股票,而高 值的股票值的股票则相对较少。他们同时发现则相对较少。他们同时发现 值在极端市场条件下值在极端市场条件下十分有用,从十分有用,从1926年到
10、年到1991年间,在市场不景气年间,在市场不景气时期风险最大的公司(时期风险最大的公司(值为前值为前10%的公司)的的公司)的表现要比整个市场表现糟糕得多。总而言之,实表现要比整个市场表现糟糕得多。总而言之,实证结果对证结果对CAPM可谓损誉参半,这些检验至今还可谓损誉参半,这些检验至今还在不同国家和市场进行着。在不同国家和市场进行着。三、套利定价模型(三、套利定价模型(APM)资本资产定价模型无法用资本资产定价模型无法用 值完全解释不同资产之值完全解释不同资产之间收益率的差异,而且它的导出建立在很多不现间收益率的差异,而且它的导出建立在很多不现实的假设基础上,这就为其它资产定价模型打开实的假
11、设基础上,这就为其它资产定价模型打开了大门,这些模型中最具竞争力的是套利定价模了大门,这些模型中最具竞争力的是套利定价模型(型(APM)。)。套利定价模型背后的逻辑基础与资本资产定价模套利定价模型背后的逻辑基础与资本资产定价模型类似,都是投资者只有在承担了不可分散的风型类似,都是投资者只有在承担了不可分散的风险时才能获得补偿。险时才能获得补偿。APM也是一个市场均衡模型,这个模型与也是一个市场均衡模型,这个模型与CAPM相比,它的假定条件要少得多。相比,它的假定条件要少得多。其中最重要的一个假定是其中最重要的一个假定是投资者如果有不增加投投资者如果有不增加投资风险就能提高其收益率的机会,都会利
12、用这种资风险就能提高其收益率的机会,都会利用这种机会机会,这个过程就是套利。这个过程就是套利。(一价定律:相同的两一价定律:相同的两种物品不能以不同的价格出售)种物品不能以不同的价格出售)通过投资者的不断套利,使各种证券的期望收益通过投资者的不断套利,使各种证券的期望收益率的大小与其风险的大小相对应、所有证券的需率的大小与其风险的大小相对应、所有证券的需求等于供给,使市场达到均衡。求等于供给,使市场达到均衡。套利与套利组合套利与套利组合:套利是指利用一个或多个市场存在的各种价格差套利是指利用一个或多个市场存在的各种价格差异,在不冒风险的情况下赚取收益的交易活动。异,在不冒风险的情况下赚取收益的
13、交易活动。(街头骗局中的套利心理)街头骗局中的套利心理)套利的五种基本形式:空间套利、时间套利、工套利的五种基本形式:空间套利、时间套利、工具套利、风险套利和税收套利。具套利、风险套利和税收套利。多个资产套利组合的三个条件:多个资产套利组合的三个条件:套利组合的资产占有为零。套利组合的资产占有为零。套利组合不具有风险,即对因素的敏感系数为零。套利组合不具有风险,即对因素的敏感系数为零。套利组合的预期收益率为正。套利组合的预期收益率为正。(一)因素模型与套利组合(一)因素模型与套利组合APM认为证券的期望收益率与某些因素有关,但认为证券的期望收益率与某些因素有关,但没有明确指出究竟是哪些因素。为
14、叙述方便,我们没有明确指出究竟是哪些因素。为叙述方便,我们先假定证券收益率只受工业生产总值的期望增长率先假定证券收益率只受工业生产总值的期望增长率这个因素影响,且令其为这个因素影响,且令其为F1,则有:,则有:()公式中的公式中的bi称为因素敏感系数。称为因素敏感系数。假设投资者拥有假设投资者拥有1、三种证券,投资者拥有、三种证券,投资者拥有的可用来投资的资产价值为的可用来投资的资产价值为120万元。每个投资者万元。每个投资者都认为这三种证券的期望收益率和因素敏感性为:都认为这三种证券的期望收益率和因素敏感性为:i ri bi证券证券.9证券证券.0证券证券 .8现在要问:这三种证券达到均衡了
15、吗?假如没有现在要问:这三种证券达到均衡了吗?假如没有达到均衡,为了达到均衡,证券的价格和期望收达到均衡,为了达到均衡,证券的价格和期望收益率会发生什么样的变化呢?益率会发生什么样的变化呢?要回答上述问题,必须先了解一下套利组合这个要回答上述问题,必须先了解一下套利组合这个概念。概念。如果存在一个证券组合无须外加资金、风险为零,如果存在一个证券组合无须外加资金、风险为零,而收益率大于零,则称这种证券组合为套利证券而收益率大于零,则称这种证券组合为套利证券组合。组合。如果上面三种证券能形成套利证券组合,说明还如果上面三种证券能形成套利证券组合,说明还有套利机会,市场还未达到均衡。有套利机会,市场
16、还未达到均衡。设设Xi代表持有第代表持有第i种证券的改变量(占投资者原种证券的改变量(占投资者原有资产价值的百分比),则根据我们对套利证有资产价值的百分比),则根据我们对套利证券组合的定义,套利证券组合必须符合以下三券组合的定义,套利证券组合必须符合以下三个条件:个条件:仅仅满足等式仅仅满足等式(1),(,(2)的解有无穷多个,我们)的解有无穷多个,我们任意令,可解得,再代入(任意令,可解得,再代入(3)式得:)式得:15%0.1+21%0.075+12%(-0.175)=0.975%0 可见存在套利机会。可见存在套利机会。如果投资者用卖掉证券如果投资者用卖掉证券3的资金的资金 1200.17
17、5=21万万 去买入证券去买入证券1、2各为各为 1200.1=12万和万和1200.075=9万万就可以在无须外加资金又不冒任何风险(设非因就可以在无须外加资金又不冒任何风险(设非因素风险足够小,可以忽略)的情况下获利,提高素风险足够小,可以忽略)的情况下获利,提高其证券组合的期望收益率。其证券组合的期望收益率。APM认为所有投资者都会利用这样的机会去套利,认为所有投资者都会利用这样的机会去套利,卖掉证券卖掉证券3去买入证券去买入证券1和和2。因此,此时证券。因此,此时证券3的的供给大于需求,而证券供给大于需求,而证券1和和2的供给小于需求,市的供给小于需求,市场未达到均衡。场未达到均衡。那
18、么,那么,ri和和bi之间呈什么关系时市场才是均衡的之间呈什么关系时市场才是均衡的呢?只有在所有证券的呢?只有在所有证券的ri和和bi之间呈直线关系时,之间呈直线关系时,市场才能达到均衡。这可以通过图形来说明。市场才能达到均衡。这可以通过图形来说明。如果所有的如果所有的ri和和bi之间不是呈直线关系,就必然之间不是呈直线关系,就必然存在套利机会,市场就未达到均衡。如图,当分存在套利机会,市场就未达到均衡。如图,当分别代表别代表1、2、3三种证券的三种证券的ABC三点不在一条直三点不在一条直线上时,总是存在通过卖出证券线上时,总是存在通过卖出证券3(C点),来点),来购买购买D点所代表的由证券点
19、所代表的由证券1、2组成的证券组合的组成的证券组合的套利机会。由于大家都愿意卖掉套利机会。由于大家都愿意卖掉3来买入来买入1、2进进行套利,这样对证券行套利,这样对证券1、2的的 需求就会上升,需需求就会上升,需求大于供给,结果导致证券求大于供给,结果导致证券1、2的价格上升,的价格上升,而因为大家都卖掉证券而因为大家都卖掉证券3,使它的需求小于供给,使它的需求小于供给,从而价格下跌。根据:从而价格下跌。根据:若若Pi0增大,则会使增大,则会使ri变小,若变小,若Pi0增大,则增大,则ri将变将变小。小。所以,大家都卖掉证券所以,大家都卖掉证券3,买入证券,买入证券1、2的结果是的结果是证券证
20、券1、2的价格越来越高,使得的价格越来越高,使得r1、r2越来越小,越来越小,而证券而证券3的价格越来越低,从而的价格越来越低,从而r3越来越大直到越来越大直到(3)式最终等于零,不再有套利机会为止。其结)式最终等于零,不再有套利机会为止。其结果是证券果是证券3的期望收益率有所上升,而证券的期望收益率有所上升,而证券1、2的的期望收益率有所下降,最后三者在同一条直线上。期望收益率有所下降,最后三者在同一条直线上。进一步地,如图,若有进一步地,如图,若有N个点,其中个点,其中N-1个点在个点在一条直线上。如果第一条直线上。如果第N点位于点位于N-1个点所在的直线个点所在的直线之下,则因为存在卖掉
21、第之下,则因为存在卖掉第N种股票去买入与其因素种股票去买入与其因素风险相同(由风险相同(由N-1种证券构成)的证券组合种证券构成)的证券组合M的套的套利机会,利机会,所以大家都会去卖掉第所以大家都会去卖掉第 N 种股票买入种股票买入M,使得第,使得第N种股票的价格下跌,期望收益率不断上升,而种股票的价格下跌,期望收益率不断上升,而其他其他N-1种股票的价格不断上升,期望收益率不断种股票的价格不断上升,期望收益率不断下降,直到所有股票的期望收益率和因素敏感系下降,直到所有股票的期望收益率和因素敏感系数呈直线关系时,套利活动才会停止。数呈直线关系时,套利活动才会停止。此时,新的直线比原来的位置相比
22、,往下移了一此时,新的直线比原来的位置相比,往下移了一点。如果第点。如果第 N种证券位于直线之上,则存在卖掉种证券位于直线之上,则存在卖掉其他证券去买第其他证券去买第 N种证券的套利机会。其过程与种证券的套利机会。其过程与位于直线之下时的情形非常类似,但新直线比原位于直线之下时的情形非常类似,但新直线比原来的直线的位置相对往上移了。当然,所有证券来的直线的位置相对往上移了。当然,所有证券的的ri和和bi在均衡时严格处于一条直线上只有在没有在均衡时严格处于一条直线上只有在没有交易费用的时候才成立,如果考虑交易费用,则交易费用的时候才成立,如果考虑交易费用,则它们将分布在理想情况下的直线周围。它们
23、将分布在理想情况下的直线周围。(二)、单因素(二)、单因素APM由上面的分析可知,在由上面的分析可知,在ri 只受单个因素影响时,只受单个因素影响时,不同证券的不同证券的ri与与bi之间应该呈一条直线的关系,若之间应该呈一条直线的关系,若单因素模型为:单因素模型为:相应的相应的ri 与与b i的直线方程为:的直线方程为:怎样确定怎样确定0、1的值呢?的值呢?如果无风险证券的期望收益为如果无风险证券的期望收益为rF的因素敏感系数的因素敏感系数 bf代表无风险证券的因素风险的大小,由于无风代表无风险证券的因素风险的大小,由于无风险证券风险为零,故无风险证券与因素险证券风险为零,故无风险证券与因素F
24、1的因素的因素敏感系数敏感系数bf必等于零。把必等于零。把ri=rf,bf=0代入()式代入()式得:得:0=rf。又令又令bp=1,则则rp=rf+1,即,即1=rp-rf,可见,可见1是是因素敏感系数为因素敏感系数为1的的因素风险溢价因素风险溢价(factor risk premium)。)。令rp=1,则1=1 rf所以:证证券的券的预预期收益率期收益率证证券收益率的方差券收益率的方差证证券收益率的券收益率的协协方差方差证证券券组组合的方差合的方差(三)双(多)因素(三)双(多)因素APM当当ri受双因素影响时,设双因素模型为:受双因素影响时,设双因素模型为:F1、F2表示对证券收益率有
25、重大影响的因素,表示对证券收益率有重大影响的因素,如国民生产总值如国民生产总值GNP的增长率和通货膨胀率等的增长率和通货膨胀率等。与与单单因因素素模模型型时时类类似似,我我们们可可以以证证明明,ri与与bi1、bi2 必必然然处处于于同同一一平平面面,凡凡是是高高于于平平面面的的,其其价价格格被被低低估估,低低于于平平面面的的其其价价格格被被高高估估,都都存存在在套套利利机机会会,通通过过众众多多投投资资者者的的不不断断套套利利使使所所有有证证券券的的需需求求等等于于供供给给,市市场场达达到到均均衡衡。设设ri与与bi1、bi2所在平面的方程为所在平面的方程为同样,由于同样,由于 rf不随不随
26、F1、F2两因素变化而变两因素变化而变化化因此因此 bf1=bf2=0,故故 0=rf分别令分别令bi1=0,bi2=1时的时的rp1=1 bi1=1,bi2=0时的时的rp2=2解得:解得:1=1 rf 2=2 rf 所以双因素所以双因素APM为:为:多因素模型与单因素和双因素时类似,设多因素多因素模型与单因素和双因素时类似,设多因素模型为:模型为:可求得对应的多因素可求得对应的多因素 APM为:为:证券收益率取决于两个因素证券的预期收益率证券收益率的方差证券收益率的协方差(四)、(四)、APM与与CAPM的关系的关系在这一讲中我们已经学习了两种风险收益模型,在这一讲中我们已经学习了两种风险
27、收益模型,它们之间有没有内在联系呢?下面我们将分类讨它们之间有没有内在联系呢?下面我们将分类讨论这个问题。论这个问题。1、单因素、单因素APM与与CAPM如果单因素如果单因素APM和和CAPM同时成立,我们已知单同时成立,我们已知单因素因素APM模型为:模型为:CAPM为:为:讨论:讨论:(i)当)当F1就是市场证券组合就是市场证券组合M时,时,1=rM,bi=i,此时,此时,APT 与与CAPM完全等价。完全等价。(ii)一般地,当)一般地,当F1不是市场证券组合不是市场证券组合M时,有时,有Cov(ri,rM)=Cov(ai+bi1F1+ei,rM)=bi1Cov(F1,rM)+Cov(e
28、i,rM)Cov(ei,rM)0 Cov(ri,rM)=bi1Cov(F1,rM)等式两边同除以等式两边同除以 得:得:代入代入CAPM中得:中得:由此可见,原来在只有单因素模型成立时,我们并不知道由此可见,原来在只有单因素模型成立时,我们并不知道1的值究竟是多少。现在当单因素的值究竟是多少。现在当单因素APM和和CAPM都成立都成立时,有:时,有:讨论:讨论:(a)若)若F1与与M正相关正相关,即即 0,则则10,ri随随bi的增减而成同方向变化;的增减而成同方向变化;(b)若)若F1与与M负相关,即负相关,即 0,则则10,ri随随bi的增减而成反方向变化。的增减而成反方向变化。2、双因素
29、、双因素APM与与CAPM的关系的关系双因素双因素APM为:为:CAPM为:为:可以得出:可以得出:Cov(ri,rM)=Cov(ai+bi1F1+bi2F2+ei,rM)=bi1Cov(F1,rM)+bi2 Cov(F2,rM)+Cov(ei,rM)Cov(ei,rM)0Cov(ri,rM)=bi1Cov(F1,rM)+bi2Cov(F2,rM)等式两边同除以等式两边同除以 即得式。即得式。将式代入式并整理得:将式代入式并整理得:所以若双因素所以若双因素APM和和CAPM同时成立,则同时成立,则有:有:多因素多因素APM与与CAPM的关系的关系多因素多因素APT模型为:模型为:CAPM为:为:同理可得:同理可得:(j=1,2k)