《《回归分析方法》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《回归分析方法》PPT课件.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、5.2 回归分析方法一元线性回归模型一元线性回归模型多元线性回归模型多元线性回归模型 非线性回归模型的建立方法非线性回归模型的建立方法 一、一元线性回归模型定义:假设有两个地理要素(变量)x和y,x为自变量,y为因变量。则一元线性回归模型的基本结构形式为n式中:a和b为待定参数;n 为各组观测数据的下标;n为随机变量。记 和 分别为参数a与b的拟合值,则n()式代表x与y之间相关关系的拟合直线,称为回归直线;是y 的估计值,亦称回归值。()()参数a与b的最小二乘拟合原则要求yi与 的误差ei的平方和达到最小,即 根据取极值的必要条件,有 解上述正规方程组()式,得到参数a与b的拟合值:()参
2、数a、b的最小二乘估计 ()()()显著性检验 方法:F检验法。总的离差平方和:在回归分析中,表示y的n次观测值之间的差异,记为 可以证明 ()式中,Q称为误差平方和,或剩余平方和,而 称为回归平方和。()()统计量F F越大,模型的效果越佳。统计量FF(1,n-2)。在显著水平下,若FF,则认为回归方程效果在此水平下显著。一般地,当FF(1,n-2)时,则认为方程效果不明显。()二、多元回归模型回归模型的建立 多元线性回归模型的结构形式:回归方程:在()式中,b0为常数,b1,b2,bk称为偏回归系数。偏回归系数的意义是,当其它自变量都固定时,自变量每变化一个单位而使因变量平均改变的数值。(
3、)()偏回归系数的推导过程:根据最小二乘法原理,的估计值 应该使 由求极值的必要条件得 方程组()式经展开整理后得()()方程组()式称为正规方程组。引入矩阵:(5.2.15)则正规方程组()式可以进一步写成矩阵形式求解得:引入记号:()正规方程组也可以写成:()回归模型的显著性检验 回归平方和U U与剩余平方和Q:回归平方和:剩余平方和为:F统计量为:计算出来F之后,可以查F分布表对模型进行显著性检验。三、非线性回归模型 非线性关系线性化的几种情况:对于指数曲线 ,令 ,可以将其转化为直线形式:,其中,;对于对数曲线 ,令 ,可以将其转化为直线形式:;对于幂函数曲线 ,令 ,可以将其转化为直
4、线形式:其中,;对于双曲线 ,令 ,转化为直线形式:;对于S型曲线 ,可 转化为直线形式:;对于幂乘积:,只要令 ,就可以将其转化为线性形式:其中,;对于对数函数和 只要令 ,就可以将其化为线性形式:例:下表给出了某地区林地景观斑块面积(Area)与周长(Perimeter)的数据。下面我们建立林地景观斑块面积A与周长P之间的非线性回归模型。序号面积A周长P序号面积A周长P110447.370625.39242232844.3004282.043215974.730612.286434054.660289.307330976.770775.7124430833.840895.98049442.
5、902530.202451823.355205.131510858.9201906.1034626270.300968.060621532.9101297.9624713573.9601045.07276891.680417.0584865590.0802250.43583695.195243.90749157270.4002407.54992260.180197.239502086.426266.54110334.33299.729513109.070261.8181111749.080558.921522038.617320.396122372.105199.667533432.13725
6、3.335138390.633592.893541600.391230.030146003.719459.467553867.586419.40615527620.2006545.291561946.184198.66116179686.2002960.4755777.30556.9021714196.460597.993587977.719715.7521822809.1801103.0705919271.8201011.1271971195.9401154.118608263.480680.710203064.242245.049 614697.1301234.1142469416.700
7、8226.0091624519.867326.3171225738.953498.6566313157.6601172.916238359.465415.151646617.270609.801246205.016414.790 654064.137437.3552560619.0201549.871665645.820432.3552614517.740791.943676993.355503.7842731020.1001700.965684304.281267.9512826447.1601246.977696336.383347.136297985.926918.312702651.4
8、14292.235303638.766399.725712656.824298.47331585425.10011474.770721846.988179.8663235220.6401877.476731616.684172.8083310067.820497.394741730.563172.1433427422.5701934.5967511303.970881.0423543071.5501171.4137614019.790638.1763657585.9402275.389779277.172862.0883728254.1301322.7957813684.750712.7873
9、8497261.0009581.298791949.164228.4033924255.030994.906804846.016324.481401837.699229.40181521457.4007393.938411608.625225.84282564370.80012212.410解:(1)作变量替换,令:,将上表中的原始数据进行对数变换,变换后得到的各新变量对应的观测数据如下表所示。序号y=lnAx=LnP序号y=lnAx=LnP19.2541066.4383794212.358138.36218629.6787636.4172438.3076225.667487310.34099
10、6.6537824410.336376.79791849.1530196.273258457.5084335.3236559.2927427.5528164610.176196.87529469.9773387.168551479.5159096.95184178.838076.0332264811.091187.71887988.2147895.4967894911.965727.78636497.72325.284414507.6432085.585528105.8121354.602457518.0420795.567651119.371536.326008527.6200275.769
11、558127.7715335.296653538.1409385.534711139.0348716.385013547.3780035.438211148.7001346.130066558.2603866.0388391513.176138.786501567.5736265.2915971612.098977.993105574.3477554.041328179.5607486.393579588.9844086.5733341810.034927.005852599.8663996.9188211911.173197.051092609.0196016.523136208.02755
12、65.501457619.5954087.1181092113.059259.015056628.4162385.787871228.6550326.211917639.4847597.067248239.031156.028643648.7974386.413133248.7331136.027773658.3099576.0807442511.012367.345927668.6386716.069247269.5831276.67449678.8527166.222147269.5831276.67449678.8527166.2221472710.342397.438951688.36
13、73655.5908062810.18297.128478698.7540635.849717298.9854366.822537707.8828485.67756308.19945.990776717.8848875.6986783113.280099.347906727.5213115.1922133210.469397.537684737.3881325.152181339.2170996.209381747.4562025.1483263410.219127.567654759.3329096.7811053510.670627.065966769.5482256.4586143610
14、.961037.729906779.1353126.7593583710.248997.187502789.5240376.5691823813.116879.167568797.5751565.4311123910.096386.902648808.4859125.782227407.516275.4354718113.164388.908416417.3831355.4198378213.243479.410208 (2)以x为横坐标、y为纵坐标,在平面直角坐标系中作出散点图。很明显,y与x呈线性关系。(3)根据所得表中的数据,运用建立线性回归模型的方法,建立y与x之间的线性回归模型,得到:对应于()式,x与y的相关系数高 达 。(4)将()还原成双对数曲线,即()()