大学数学(高数微积分)第一章多项式第二节(课堂讲义).ppt

上传人:豆**** 文档编号:77568714 上传时间:2023-03-15 格式:PPT 页数:14 大小:2.54MB
返回 下载 相关 举报
大学数学(高数微积分)第一章多项式第二节(课堂讲义).ppt_第1页
第1页 / 共14页
大学数学(高数微积分)第一章多项式第二节(课堂讲义).ppt_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《大学数学(高数微积分)第一章多项式第二节(课堂讲义).ppt》由会员分享,可在线阅读,更多相关《大学数学(高数微积分)第一章多项式第二节(课堂讲义).ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、大学数学大学数学(高数微积分高数微积分)第一章多项式第二节第一章多项式第二节(课堂讲义课堂讲义)一、定义在对多项式的讨论中,我们总是以一个预先给定的数域 P 作为基础.设 x 是一个符号(或称文字)我们有定义 2 设设 n n 是一非负整数是一非负整数.形式表达式形式表达式a an nx xn n+a an n-1-1x xn n-1-1+a a1 1x x+a a0 0,(1),(1)其中其中 a a0 0,a a1 1,a an n-1-1,a an n 全属于数域全属于数域 P P ,称为,称为系数在数域 P 中的一元多项式,或者简称为,或者简称为数域 P 上的一元多项式.中,aixi

2、称为 i 次项,ai 称为i 次项的系数.以后我们用 f(x),g(x),或 f,g,等来代表多项式.注意我们这儿定义的多项式是符号或文字的形式表达式.当这符号是未知数时,它是中学所学代数中的多项式.看应用需要,这个符号还可以代表其他待定事物.为了能统一研究未知数和其他在多项式待定事物的多项式,我们才抽象地定义上述形式表达式.并且还要对它们引入运算来反映各个待定事物所满足的运算规律,统一研究以得到它们普遍的公共的性质.定义 3 如果在多项式如果在多项式 f f(x x)与与 g g(x x)中,除去中,除去系数为零的项外,同次项的系数全相等,那么系数为零的项外,同次项的系数全相等,那么f f(

3、x x)与与 g g(x x)就称为就称为相等,记为,记为f f(x x)=)=g g(x x).).系数全为零的多项式称为系数全为零的多项式称为零多项式,记为,记为 0.0.在中,如果 an 0,那么 anxn 称为多项式(1)的首项,an 称为首项系数,n 称为多项式(1)的次数.零多项式是唯一不定义次数唯一不定义次数的多项式.多项式 f(x)的次数记为(f(x).二、多项式的运算为便于计算和讨论,我们常常用和号来表达多项式.设f(x)=anxn+an-1xn-1+a1x+a0,g(x)=bmxm+bm-1xm-1+b1x+b0 是数域 P 上两个多项式.那么它们可以写成2.加法在表示多项

4、式 f(x)与 g(x)的和时,如 n m,为了方便起见,在 g(x)中令 bn=bn-1=bm+1=0.那么 f(x)与 g(x)的和为f(x)+g(x)=(an+bn)xn+(an-1+bn-1)xn-1+.+(a1+b1)x+(a0+b0)3.乘法f(x)g(x)=anbmxn+m+(anbm-1+an-1bm)xn+m-1+(a1b0+a0b1)x+a0b0,其中 s 次项的系数是所以 f(x)g(x)可表成显然,数域数域 P P 上的两个多项式经过加、减、乘上的两个多项式经过加、减、乘等运算后,所得结果仍然是数域等运算后,所得结果仍然是数域 P P 上的多项式上的多项式.对于多项式的

5、加减法,不难看出(f(x)g(x)max(f(x),(g(x)对于多项式的乘法,可以证明,如果 f(x)0,g(x)0,那么 f(x)g(x)0,并且(f(x)g(x)=(f(x)+(g(x)由以上证明还看出,多项式乘积的首项系数就多项式乘积的首项系数就等于因子首项系数的乘积等于因子首项系数的乘积.显然,上面得出的结果都可以推广到多个多项式的情形.下面来讨论多项式的运算所满足的规律.三、多项式的运算规律1.加法交换律f(x)+g(x)=g(x)+f(x).2.加法结合律(f(x)+g(x)+h(x)=f(x)+(g(x)+h(x).3.乘法交换律f(x)g(x)=g(x)f(x).4.乘法结合

6、律(f(x)g(x)h(x)=f(x)(g(x)h(x).5.乘法对加法的分配律f(x)(g(x)+h(x)=f(x)g(x)+f(x)h(x).6.乘法消去律如果 f(x)g(x)=f(x)h(x)且 f(x)0,那么 g(x)=h(x).定义 4 所有系数在数域所有系数在数域 P P 中的一元多项式的中的一元多项式的全体,称为数域全体,称为数域 P P 上的上的一元多项式环 ,记为记为 P P x x,P P 称为称为 P P x x 的系数域的系数域 .本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返

7、回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.本节内容已结束!若想结束本堂课,请单击返回按钮.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 企业培训

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁