圆锥曲线离心率的求法教师版.doc

上传人:美****子 文档编号:77550819 上传时间:2023-03-15 格式:DOC 页数:15 大小:1.03MB
返回 下载 相关 举报
圆锥曲线离心率的求法教师版.doc_第1页
第1页 / 共15页
圆锥曲线离心率的求法教师版.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《圆锥曲线离心率的求法教师版.doc》由会员分享,可在线阅读,更多相关《圆锥曲线离心率的求法教师版.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、离心率的专题复习椭圆的离心率,双曲线的离心率,抛物线的离心率一、直接求出、,求解已知圆锥曲线的标准方程或、易求时,可利用率心率公式来解决。例1:已知双曲线()的一条准线与抛物线的准线重合,则该双曲线的离心率为( )A. B. C. D. 解:抛物线的准线是,即双曲线的右准线,则,解得,故选D变式练习1:若椭圆经过原点,且焦点为、,则其离心率为( )A. B. C. D. 解:由、知 ,又椭圆过原点,所以离心率.故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A. B. C. D 解:由题设,则,因此选C变式练习3:点P(-3,1)在椭圆()的左准线上,过点且方

2、向为的光线,经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A B C D 解:由题意知,入射光线为,关于的反射光线(对称关系)为,则解得,则,故选A二、构造、的齐次式,解出根据题设条件,借助、之间的关系,构造、的关系(特别是齐二次式),进而得到关于的一元方程,从而解得离心率。例2:已知、是双曲线()的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心率是( )A. B. C. D. 解:如图,设的中点为,则的横坐标为,由焦半径公式, 即,得,解得(舍去),故选D变式练习1:设双曲线()的半焦距为,直线过,两点.已知原点到直线的距离为,则双曲线的离心率为( )A. B.

3、 C. D. 解:由已知,直线的方程为,由点到直线的距离公式,得,又, ,两边平方,得,整理得,得或,又 ,故选A变式练习2:双曲线虚轴的一个端点为,两个焦点为、,则双曲线的离心率为( )A B C D 解:如图所示,不妨设,则,又,在中, 由余弦定理,得,即, ,故选B三、采用离心率的定义以及椭圆的定义求解例3:设椭圆的两个焦点分别为、,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是_。解:变式练习1已知长方形ABCD,AB4,BC3,则以A、B为焦点,且过C、D两点的椭圆的离心率为 . 变式练习2已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若

4、边MF1的中点在双曲线上,则双曲线的离心率是 . 变式练习3如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为 . 四、根据圆锥曲线的统一定义求解例4:设椭圆()的右焦点为,右准线为,若过且垂直于轴的弦的长等于点到的距离,则椭圆的离心率是.解:如图所示,是过且垂直于轴的弦,于,为到准线的距离,根据椭圆的第二定义, 变式练习1:在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为,则该椭圆的离心率为( )A B C D 解:变式练习2:已知双曲线的右焦点为,过且斜率为的直线交于两点,若,则的离心率为 . 变式练习3:

5、已知椭圆C:(ab0)的离心率为,过右焦点F且斜率为k(k0)的直线于C相交于A、B两点,若,则k = . 五、构建关于的不等式,求的取值范围:一般来说,求椭圆或双曲线的离心率的取值范围,通常可以从两个方面来研究:一是考虑几何的大小,例如线段的长度、角的大小等;二是通过设椭圆(或双曲线)点的坐标,利用椭圆或双曲线本身的范围,列出不等式(一)基本问题例椭圆的焦点为,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是 Ex1设,则双曲线的离心率的取值范围是 (二)数形结合例已知椭圆1(ab0)的焦点分别为F1,F2,若该椭圆上存在一点P,使得F1PF260,则椭圆离心率的取值范围是 .Ex1

6、已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是 .(三)利用焦半径的取值范围例1已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值范围是 (1, )变:已知椭圆1(ab0)的左右焦点分别为F1,F2,若椭圆的右准线上存在一点P,使得PF1的中垂线过点F2,则椭圆离心率的取值范围是 Ex1双曲线(a0,b0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为 Ex2已知椭圆1(ab0)的焦点分别为F1,F2,若该椭圆上存在一点P,使得,则该椭圆离心率的取值范围是 配套练习1. 设双曲线()的离心率为,且

7、它的一条准线与抛物线的准线重合,则此双曲线的方程为( )A. B. C. D. 2已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A BCD3已知双曲线的一条渐近线方程为,则双曲线的离心率为( )A B C D 4在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为A B C D 5在给定双曲线中,过焦点垂直于实轴的弦长为,焦点到相应准线的距离为,则该双曲线的离心率为( )A B C D 6如图,和分别是双曲线()的两个焦点,和是以为圆心,以 为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( )A B C D 7. 设、分别是椭

8、圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是( )A B C D 8设、分别是双曲线的左、右焦点,若双曲线上存在点,使,且,则双曲线离心率为( )A B C D 9已知双曲线()的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A B C D 10椭圆()的焦点为、,两条准线与轴的交点分别为、,若,则该椭圆离心率的取值范围是()AB CD答案:1.由可得故选D2.已知椭圆的长轴长是短轴长的2倍, ,椭圆的离心率,选D。3.双曲线焦点在x轴,由渐近线方程可得,故选A4.不妨设椭圆方程为(ab0),则有,据此求出e

9、5.不妨设双曲线方程为(a0,b0),则有,据此解得e,选C6.解析:如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,连接AF1,AF2F1=30,|AF1|=c,|AF2|=c, ,双曲线的离心率为,选D。7.由已知P(),所以化简得8.设F1,F2分别是双曲线的左、右焦点。若双曲线上存在点A,使F1AF2=90,且|AF1|=3|AF2|,设|AF2|=1,|AF1|=3,双曲线中, 离心率,选B。9.双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率, ,离心率e2=,

10、 e2,选C10.椭圆的焦点为,两条准线与轴的交点分别为,若,则,该椭圆离心率e,选D椭圆离心率的求法1. 椭圆方程的右焦点为,过的直线与椭圆相交于两点,直线的倾斜角为60,,求椭圆的离心率?(焦半径公式,的应用左加右减,弦长公式)2. 椭圆方程的右焦点为,其右准线与轴的交点为,在椭圆上存在点满足线段的垂直平分线过点,则椭圆的离心率的范围?(焦准距的应用)3. 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是?(关于的二元二次方程解法)4. 已知是椭圆的一个焦点,是短轴上的一个端点,线段的延长线交于,且,则的离心率为?(相似三角形性质:对应边成比例 的应用)5. 过椭圆的左

11、焦点,右顶点为,点在椭圆上,且轴,直线交轴于点,若,则椭圆的离心率为?(相似三角形性质的应用)6. 过椭圆的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为?(椭圆焦三角形面积)7. 已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率?(椭圆基本性质的应用)8. 椭圆的离心率为?(椭圆基本性质的应用)9. 椭圆的焦点为,两条准线与轴的交点为,若,则该椭圆的离心率的取值范围是?(椭圆基本性质的应用)10. 设分别是椭圆的左、右焦点,若在其右准线上存在点,使线段的中垂线过点,则椭圆的离心率的取值范围是?(焦准距;垂直平分线性质:垂直平分线上的点到线段两端距离相等;三角形性质:两边之和大于第三

12、边 应用)11. 在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为?(通径,焦准距)12. 已知椭圆的左右焦点分别为,若椭圆上存在点P使,则该椭圆的离心率的取值范围是?(正弦定理,第一定义)13. 在平面直角坐标系中,为椭圆的四个顶点,为其右焦点,直线与直线相交于点,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为?(直线方程交点坐标)14. 在中,.若以为焦点的椭圆经过点,则该椭圆的离心率为?(余弦定理,第一定义)15. 已知正方形,则以为焦点,且过两点的椭圆的离心率为?(通径)16. 已知椭圆的焦距为,以点为圆心,为半径作圆。若过点作圆的两条切线相互

13、垂直,则该椭圆的离心率为?(基本性质)17. 已知分别是椭圆的左、右焦点,满足的点总在椭圆的内部,则椭圆离心率的取值范围是?(圆周角:圆直径所对的圆周角等于90)18. 过椭圆左焦点且倾斜角为的直线交椭圆于两点,若,则椭圆的离心率为?(焦半径公式,弦长公式)19. 已知椭圆的短轴长为6,焦点到长轴的一个端点的距离等于9,则椭圆的离心率为?20. 椭圆的焦点及其短轴端点都在以原点为圆心的同一个圆上,则此椭圆的离心率为?21. 已知椭圆的短轴的上下端点分别为,左右焦点分别为,长轴右端点为,若,则椭圆的离心率为?(向量坐标加减)22. 若以椭圆的右焦点为圆心,为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是?(焦准距)23. 已知点,为椭圆的左准线与轴的交点,若线段的中点在椭圆上,则该椭圆的离心率为?24. 若斜率为的直线与椭圆有两个不同的交点,且这两个交点在轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为?(通径)25. 已知两点分别是椭圆的左顶点和上顶点,而是椭圆的右焦点,若,则椭圆的离心率为?(两直线垂直,有)第 15 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 文案大全

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁