《高中数学动点轨迹问题专题讲解.doc》由会员分享,可在线阅读,更多相关《高中数学动点轨迹问题专题讲解.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、动点轨迹问题专题讲解一专题内容:求动点的轨迹方程实质上是建立动点的坐标之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉 (2)定义法:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程 (3)转移代入法:如果所求轨迹上的点是随另一个在已知曲线:上的动点的变化而变化,且能用表示,即,则将代入已知曲线,化简后即为所求的轨迹
2、方程 (4)参数法:选取适当的参数(如直线斜率等),分别求出动点坐标与参数的关系式,得出所求轨迹的参数方程,消去参数即可 (5)交轨法:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系) 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线!二相关试题训练(一)选择、填空题1( )已知、是定点,动点满足,则动点的轨迹是 (A)椭圆 (B)直线 (C)圆 (D)线段2( )设,的周长为36,则的顶点的轨迹方程是(A)() (B)()(C)() (D)()3与圆外切,又与轴相切的圆的圆心轨迹方程是 ;4P在以、为焦点的双曲线上运动
3、,则的重心G的轨迹方程是 ;5已知圆C:内一点,圆C上一动点Q, AQ的垂直平分线交CQ于P点,则P点的轨迹方程为 6ABC的顶点为、,ABC的内切圆圆心在直线上,则顶点C的轨迹方程是 ;()变式:若点为双曲线的右支上一点,、分别是左、右焦点,则的内切圆圆心的轨迹方程是 ;推广:若点为椭圆上任一点,、分别是左、右焦点,圆与线段的延长线、线段及轴分别相切,则圆心的轨迹是 ;7已知动点到定点的距离比到直线的距离少1,则点的轨迹方程是8抛物线的一组斜率为的平行弦的中点的轨迹方程是 9过抛物线的焦点作直线与抛物线交于P、Q两点,当此直线绕焦点旋转时,弦中点的轨迹方程为 解法分析:解法1 当直线的斜率存
4、在时,设PQ所在直线方程为与抛物线方程联立,消去得设,中点为,则有消得 当直线的斜率不存在时,易得弦的中点为,也满足所求方程故所求轨迹方程为解法2设,由得,设中点为,当时,有,又,所以,即当时,易得弦的中点为,也满足所求方程故所求轨迹方程为10过定点作直线交抛物线于A、B两点, 过A、B分别作抛物线C的切线交于点M, 则点M的轨迹方程为_(二)解答题1一动圆过点,且与圆相内切,求该动圆圆心的轨迹方程(定义法)2过椭圆的左顶点作任意弦并延长到,使,为椭圆另一顶点,连结交于点,求动点的轨迹方程(直接法、定义法;突出转化思想)3已知、是椭圆的长轴端点,、是椭圆上关于长轴对称的两点,求直线和的交点的轨
5、迹(交轨法)4已知点G是ABC的重心,在轴上有一点M,满足(1)求点C的轨迹方程;(2)若斜率为的直线与点C的轨迹交于不同两点P、Q,且满足,试求的取值范围解:(1)设,则由重心坐标公式可得 ,点在轴上, ,即 故点的轨迹方程为()(直接法)(2)设直线的方程为(),、,的中点为由消,得 ,即 又, , , ,即 , ,又由式可得 , 且 且,解得且故的取值范围是且5已知平面上两定点、,为一动点,满足()求动点的轨迹的方程;(直接法)()若A、B是轨迹上的两动点,且过A、B两点分别作轨迹的切线,设其交点为,证明为定值解:()设由已知,,,3分整理,得 即动点的轨迹为抛物线,其方程为6已知O为坐
6、标原点,点、,动点、满足(),求点M的轨迹W的方程 解:, MN垂直平分AF又, 点M在AE上, 点M的轨迹W是以E、F为焦点的椭圆,且半长轴,半焦距, 点M的轨迹W的方程为()7设,为直角坐标系内轴正方向上的单位向量,若向量, 且(1)求点的轨迹的方程;(定义法)(2)过点作直线与曲线交于、两点,设,是否存在这样的直线,使得四边形是矩形?若存在,求出直线的方程,若不存在,试说明理由解:(1);(2)因为过轴上的点若直线是轴,则两点是椭圆的顶点,所以与 重合,与四边形是矩形矛盾故直线的斜率存在,设方程为,由 消得此时恒成立,且,所以四边形是平行四边形若存在直线,使得四边形是矩形,则,即即 ,得
7、故存在直线:,使得四边形是矩形8如图,平面内的定点F到定直线l的距离为2,定点E满足:=2,且于G,点Q是直线上一动点,点M满足:,点P满足:,(I)建立适当的直角坐标系,求动点P的轨迹方程;(II)若经过点E的直线与点P的轨迹交于相异两点A、B,令,当时,求直线的斜率的取值范围解:(1)以的中点为原点,以所在直线为轴,建立平面直角坐标系,设点,则,即所求点的轨迹方程为(2)设点设AF的斜率为,BF的斜率为,直线的方程为 由6分 7分 8分10分由于11分 解得13分直线斜率k的取值范围是9如图所示,已知定点,动点在轴上运动,过点作交轴于点,并延长到点,且,(1)求动点的轨迹方程;(2)直线与
8、动点的轨迹交于、两点,若,且,求直线的斜率的取值范围解:(1)设,由得,又,即动点的轨迹方程为(2)10已知点,点在轴上,点在轴上,为动点,满足,(1)求点轨迹的方程;(2)将(1)中轨迹按向量平移后得曲线,设是上任一点,过作圆的两条切线,分别交轴与、两点,求的取值范围解:(1)设、,则、由题意得 ,故动点的轨迹方程为(2)11如图和两点分别在射线、上移动,且,为坐标原点,动点满足(1)求的值; (2)求点的轨迹的方程,并说明它表示怎样的曲线?(3)若直线l过点交(2)中曲线于、两点,且,求的方程解:(1)由已知得, (2)设P点坐标为(),由得 消去,可得,又因, P点的轨迹方程为它表示以坐
9、标原点为中心,焦点在轴上,且实轴长为2,焦距为4的双曲线的右支(3)设直线l的方程为,将其代入C的方程得 即 ,易知(否则,直线l的斜率为,它与渐近线平行,不符合题意) 又,设,则 l与C的两个交点在轴的右侧 ,即,又由同理可得 , 由得 , 由得, 由得,消去得 考虑几何求法!解之得: ,满足故所求直线l存在,其方程为:或12设A,B分别是直线和上的两个动点,并且,动点P满足记动点P的轨迹为C(I) 求轨迹C的方程;(II)若点D的坐标为(0,16),M、N是曲线C上的两个动点,且,求实数的取值范围解:(I)设,因为A、B分别为直线和上的点,故可设又, 即曲线C的方程为 (II) 设N(s,
10、t),M(x,y),则由,可得(x,y-16)= (s,t-16) 故, M、N在曲线C上, 消去s得 由题意知,且,解得 又 , 解得 () 故实数的取值范围是()13设双曲线的两个焦点分别为、,离心率为2(1)求此双曲线的渐近线、的方程;()(2)若A、B分别为、上的动点,且,求线段AB的中点M的轨迹方程,并说明是什么曲线()提示:,又,则,又 ,代入距离公式即可(3)过点是否存在直线,使与双曲线交于、两点,且,若存在,求出直线的方程;若不存在,说明理由(不存在)14已知点,直线,设动点P到直线的距离为,已知,且 (1)求动点P的轨迹方程;(2)若,求向量与的夹角;(3)如图所示,若点G满
11、足,点M满足,且线段MG的垂直平分线经过点P,求PGF的面积15如图,直线与椭圆()交于A、B两点,以OA、OB为邻边作平行四边形OAPB(O为坐标原点)(1)若,且四边形OAPB为矩形,求的值;()(2)若,当变化时(),求点P的轨迹方程()16双曲线C:(,)的离心率为2,其中,且(1)求双曲线C的方程;(2)若双曲线C上存在关于直线:对称的点,求实数的取值范围解:(I)依题意有:解得:所求双曲线的方程为6分()当k=0时,显然不存在7分当k0时,设双曲线上两点M、N关于直线l对称由lMN,直线MN的方程为则M、N两点的坐标满足方程组由 消去y得9分显然,即 设线段MN中点D()则D()在
12、直线l上,即 把带入中得 ,解得或或即或,且k0k的取值范围是14分17已知向量=(2,0),=(0,1),动点M到定直线y =1的距离等于d,并且满足=K(-d2),其中O为坐标原点,K为参数.()求动点M的轨迹方程,并判断曲线类型;()如果动点M的轨迹是一条圆锥曲线,其离心率e满足e,求实数K的取值范围.18过抛物线的焦点作两条弦、,若,(1)求证:直线过定点;(2)记(1)中的定点为,求证为钝角;(3)分别以、为直径作圆,两圆公共弦的中点为,求的轨迹方程,并指出轨迹是什么曲线19(05年江西)如图,是抛物线上上的一点,动弦、分别交轴于、两点,且(1)若为定点,证明:直线的斜率为定值;(2
13、)若为动点,且,求的重心的轨迹思路分析:(1)由直线(或)方程与抛物线方程组成的方程组解出点F和点的坐标,利用斜率公式来证明;(2)用点的坐标将、点的坐标表示出来,进而表示出点坐标,消去即得到的轨迹方程(参数法).解:(1)法一:设,直线的斜率为(),则直线的斜率为,方程为由,消得,解得, ,(定值)所以直线的斜率为定值法二:设定点,、,由 得 ,即;同理 , ,即, 所以,(定值)第一问的变式:过点作倾斜角互补的直线ME、MF,则直线EF的斜率为定值;根据不同的倾斜角,可得出一组平行弦(2)直线ME的方程为由得同理可得设重心G(x, y),则有消去参数得20如图,是边长为2的正方形纸片,沿某动直线为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点都落在边上,记为,折痕与交于点,点满足关系式(1)建立适当的直角坐标系,求点的轨迹方程;(2)若曲线是由点的轨迹及其关于边对称的曲线组成的,是边上的一点,过点的直线交曲线于、两点,且,求实数的取值范围第 17 页