质量专业理论与实务讲义二.doc

上传人:美****子 文档编号:77544368 上传时间:2023-03-15 格式:DOC 页数:14 大小:350.50KB
返回 下载 相关 举报
质量专业理论与实务讲义二.doc_第1页
第1页 / 共14页
质量专业理论与实务讲义二.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《质量专业理论与实务讲义二.doc》由会员分享,可在线阅读,更多相关《质量专业理论与实务讲义二.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 1t分布:设x1,x2,xn是来自正态总体N,2的一个样本,那么有:N,对样本均值施行标准化变换,那么有:N0,1,当用样本标准s代替上式中的总体标准差,那么上式u变量改为t变量,标准正态分布N0,1也随之改为“自由度为n-1的t分布,记为tn-1,即:tn-1。 22分布:自由度为n-1的2分布的概率密度函数在正半轴上呈偏态分布。 3F分布:设有两个独立的正态总体N1,2和N2,2,它们的方差相等。又设x1,x2,xn是来自N1,2的一个样本;y1,y2,ym是来自N2,2的一个样本,两个样本相互独立。它们的样本方差比的分布是自由度为n-1和m-1的F分布,其中n-1称为分子自由度或第1自

2、由度;m-1称为分母自由度或第2自由度。F分布的概率密度函数在正半轴上呈偏态分布。考点17:参数估计 重点等级:参数主要是指:分布中的未知参数,如二项分布b(1,p)中的p,正态分布N,2中的,2或;分布的均值E(X)、方差Var(X)等未知特征数;其他未知参数,如某事件的概率P(A)等。上述未知参数都需要根据样本和参数的统计含义选择适宜的统计量并作出估计。参数估计有两种根本形式:点估计与区间估计。考点18:点估计 重点等级:1点估计优良性标准 无偏性是表示估计量优良性的一个重要标准,只要有可能,应该尽可能选用无偏估计量,或近似无偏估计量。有效性是判定估计量优良性的另一个标准。 2求点估计的方

3、法-矩法估计 由于均值与方差在统计学中统称为矩,总体均值与总体方差属于总体矩,样本均值与样本方差属于样本矩。获得未知参数的点估计的方法称为矩法估计。矩法估计简单而实用,所获得的估计量通常(尽管不总是如此)也有较好的性质。但是应该注意到矩法估计不一定总是最有效的,而且有时估计也不唯一。 3正态总体参数的估计 正态均值无偏估计有两个,一个是样本均值,另一个是样本中位数;正态方差2的无偏估计常用的只有一个,就是样本方差S2,即;正态标准差的无偏估计也有两个,一个是对样本极差Rxn-x1进展修偏而得,另一个是对样本标准差s进展修偏而得,具体是:,。考点19:区间估计 重点等级:11-置信区间的含义。所

4、构造的随机区间L,U覆盖(盖住)未知参数的概率为1-。由于这个随机区间随样本观测值的不同而不同,它有时覆盖了参数,有时没有覆盖,但是用这种方法作区间估计时,100次中大约有100(1-)个区间能覆盖未知参数。如果PLPU/2,那么称这种置信区间为等尾置信区间。 2正态总体参数的置信区间。总体均值的置信区间的求法:的估计一般用样本均值,从的分布来构造置信区间。当总体标准差时,利用正态分布可得的1-置信区间为:,今后也记为,其中是标准正态分布的1-分位数;总体方差2与标准差的置信区间的求法:2的估计常用样本方差s2,因此从s2的分布来构造置信区间。利用2n-1分布可以得到2的1-置信区间为:,其中

5、与分别是2n-1分布的分位数与1-分位数。将上式两边开平方,可得的1-置信区间为。考点20:假设检验的根本思想与根本步骤 重点等级:1假设检验问题 这不是一个参数估计问题;这里要求对命题“=x作出答复:是与否;这一类问题称为假设检验问题;这类问题在质量管理中普遍存在。 2根本步骤 1建立假设; 2选择检验统计量,给出拒绝域分形式; 3给出显著性水平:在作判断中会犯错误,要允许犯错误,我们的任务是控制犯错误的概率。在假设检验中,错误有两类。拒真错误:原假设H0为真,但由于抽样的随机性,样本落在拒绝域W内,从而导致拒绝H0,其发生概率记为,又称为显著性水平;取伪错误:原假设H0不真,但由于抽样的随

6、机性,样本落在内,从而导致承受H0,其发生概率为。 理论研究说明:在一样样本量下,要使小,必导致大;在一样样本量下,要使小,必导致大;要使、皆小,只有增大样本量n才可到达,这在实际中有时并不可行。折中方案是:控制,但不使过小,在适当控制中制约。 4确定临界值c,给出拒绝域W:由标准正态分布N0,1的分位数性质知与互为相反数,即-,从而可得拒绝域W。 5判断。考点21:正态均值的假设检验情形 重点等级:1关于正态均值常用的三对假设。H0:0,H1:0单侧假设检验问题;H0:0,H1:0单侧假设检验问题;H0:0,H1:0双侧假设检验问题。 2检验统计量都用u统计量,在0,N0,1。 34给出显著

7、水平性,确定拒绝域W 5判断考点22:正态均值的假设检验未知情形 重点等级:1关于正态均值常用的三对假设。H0:0,H1:0;H0:0,H1:0;H0:0,H1:0。 2检验统计量都用t统计量,在0,tn-1。 34给出显著水平性,确定拒绝域W H1:0 Wtt1-n-1 H1:0 Wttn-1 H1:0 W|t|t1-/2n-1 5判断考点23:正态方差的假设检验 重点等级: 1关于正态方差2常用的三对假设。H0:2,H1:2;H0:2,H1:2;H0:2,H1:2。 2检验统计量为2统计量,当2时,n-1。 34给出显著水平性,确定拒绝域W H1:2 W2n-1 H1:2 W2n-1 H1

8、:2 W= 5判断第二章 常用统计技术考点1:方差分析的几个概念 重点等级:1因子 将在试验中会改变状态的因素称为因子,常用大写字母A、B、C等表示。因子常被分为两类:定性因子(如工厂,原料产地等)与定量因子(如温度、压力等)。回归分析主要研究定量因子,定量因子又称为变量。 2因子的水平 因子所处的状态称为因子的水平,用因子的字母加下标来表示,譬如因子A的水平用A1、A2、等表示。 3方差分析 数据分析主要是要检验:H0:1=2r H1:1,2,r不全相等,检验这一对假设的统计技术便是方差分析。 方差分析是在一样方差假定下检验多个正态均值是否相等的一种统计分析方法。具体地说,该问题的根本假定是

9、:在水平Ai下,指标服从正态分布;在不同水平下,方差2相等;数据yij相互独立。考点2:单因子方差分析 重点等级:引起数据差异的原因有两个:由于因子A的水平不同,当假设H0不真时,各个水平下指标的均值不同,这必然会使试验结果不同,我们可以用组间平方和来表示,也称因子A的平方和;这里乘以m是因为在每一水平下进展了m次试验;由于存在随机误差,即使在同一水平下获得的数据间也有差异,这是除了因子A的水平外的其他所有原因引起的,我们将它们归结为随机误差,可以用组内平方和表示:,也称为误差平方和。可以证明有如下平方和分解式:ST=SA+Se。 可以设想:当H0不真时,因子A水平不同引起的波动相对于误差来讲

10、是比拟大的,而当假设H0为真时,两者都可以看成都是由随机波动引起的,它们都可以作为误差方差的某种估计。由于两者所包含的误差的量有差异,所以为了进展比拟,还需要将每个平方和除以各自的自由度。ST、SA、Se的自由度分别用fT、fA、fe表示,分解式为:fTfA+fe,其中,fTn-1rm-1,fAr-1,fe=fT-fArm-1。因子或误差平方和与相应的自由度之比,也即按自由度平均的平方和称为均方,并分别记为:MSA=SA/fA,MSe=Se/fe,当MSA与MSe相差不大时,认为因子A不显著;而当MSA相对于MSe大得多时,认为A是显著的。这一比拟可以用两者的比表示,称为F比,记为:F=MSA

11、/MSe,当FF1-fA,fe时认为因子A在显著性水平上是显著的,其中F1-fA,fe是自由度为fA,fe的F分布的1-分位数。 在以上计算中,关键是计算各个离差平方和,在计算时运用以下的等式是很有帮助的:,其中是第i个水平数据的和,表示所有nrm个数据的总和。 方差分析的一般步骤为:计算因子A的每一水平下数据的和T1,T2,Tr及总和T;计算各类数据的平方和,T2;依次计算ST,SA,Se;计算各均方及F比值并列出方差分析表;对于给定的显著性水平,将求得的F比与F分布表中F1-fA,fe比拟,当FF1-fA,fe时认为因子A是显著的,否那么认为因子A是不显著的。考点3:散布图与相关系数 重点

12、等级: 1散布图 为了研究两个变量之间存在什么关系,可以画一张图,把每一对(xi,yi)看成直角坐标系中的一个点,在图中标出n个点,称这样的图为散布图。 2相关系数 n个点根本在一条直线附近,但又不完全在一条直线上,那么可用一个统计量来表示它们的线性关系的密切程度,这个量称为相关系数,记为r,它定义为:其中: 当r=1时,n个点完全在一条直线上,这时称两个变量完全线性相关。 当r=O时,称两个变量线性不相关,这时散布图上n个点可能毫无规律,不过也可能两个变量间存在某种曲线的趋势。 当r0时,称两个变量正相关,这时当x值增加时,y值也有增大的趋势。 当r0时,称两个变量负相关,这时当x值增加时,

13、y值有减少的趋势。 可以根据r的绝对值的大小去判断两个变量间线性相关的程度,|r|愈大,线性相关就愈强。 由于上述的相关系数是根据样本求出的,即使实际上两个变量不相关,但是求出的相关系数r不见得恰好等于0。考点4:一元线性回归方程 重点等级:1一元线性回归方程的求法 求一元线性回归方程的步骤为:计算变量x与y的数据和Tx,Ty;计算各个变量数据的平方和及其乘积和;按,;按bLxy/Lxx,求出b与a;写出回归方程,也可以表示为。注意由回归方程画出的回归直线一定通过0,a与,两点。 2回归方程的显著性检验 建立回归方程的目的是表达两个具有线性相关的变量间的定量关系,因此,只有当两个变量具有线性相

14、关关系时所建立的回归方程才是有意义的。检验两个变量间是否存在线性相关关系的问题便是对回归方程的显著性检验问题。通常由两种检验方法:对于给定的显著水平,当相关系数r的绝对值大于临界值n-2时,便认为两个变量间存在线性相关关系,所求得的回归是显著的,即回归方程是有意义的;为了便于推广到多元线性回归场合,给出另一种检验方法,这便是方差分析的方法。对给出的n个y的观测值求出其总的波动,如同方差分析中一样,用ST表示总离差平方和:造成这种波动的原因有两个方面:一是由于自变量x的取值不同,当变量y与x线性相关时,x的变化会引起y的变化;另一个原因是除了自变量x以外的一切因素,统统归结为随机误差。用回归平方

15、和SR与残差平方和SE分别表示由这两个原因引起的数据波动:,同样可以证明有平方和分解式:STSR+SE,它们的自由度也有分解式:fTfR+fE,其中:fTR=1,fEfT-fR,如同方差分析中一样,计算F比:,对给定的显著性水平,当FF1-fA,fe时,认为回归方程显著,即是有意义的。 3利用回归方程进展预测 利用回归方程进展预测的步骤为:将给定的x0的值代入所求得的回归方程,得到预测值;求概率为1-的预测区间:先求的估计;由给定的,查t分布表得的值,按计算的值,写出预测区间。考点5:可化为一元线性回归的曲线回归 重点等级:1确定曲线回归方程形式 常用确实定曲线回归方程形式的方法有两种,一是根

16、据专业知识,二是根据数据所画的散步图,将它与一些标准的函数图像进展比拟后加以选择。可选用的回归曲线有多种形式,如:0,0;0;0;0。 2曲线回归方程的比拟 常用的准那么有:要求相关指数R大,其平方在有的书中也称其为决定系数,它定义为:,对于不同的曲线回归方程,其残差平方和是不同的,我们要求小的为好,也就是要求R2大;要求标准残差s小,它被定义为:由于要求残差平方和小为好,也就是要求s小。考点6:正交表 重点等级: 试验设计的方法很多,正交试验设计就是一种常用方法,它利用“正交表选择试验的条件,并利用正交表的特点进展数据分析,找出最好的或满意的试验条件。正交表L934,这里“L是正交表的代号,

17、“9”表示表的行数,在试验中表示用这张表安排试验的话,要做9个不同条件的试验,“4”表示表的列数,在试验中表示用这张表安排试验的话,最多可以安排4个因子,“3”表示表的主体只有3个不同的数字:1,2,3,在试验中它代表因子水平的编号,即用这张表安排试验时每个因子应取3个不同水平。正交表具有正交性,它有两个特点:每列中每个数字重复次数一样;将任意两列的同行数字看成一个数对,那么一切可能数对重复次数一样。考点7:无交互作用的正交设计与数据分析 重点等级:1试验的设计 在安排试验时,一般应考虑:明确试验目的;明确试验指标;确定因子与水平;选用适宜的正交表,进展表头设计,列出试验方案。 2数据分析 1

18、数据的直观分析:寻找最好的试验条件;各因子对指标影响程度大小的分析:一个因子的极差是该因子不同水平对应的试验构造均值的最大值与最小值的差,因为该值大的话,那么改变这一因子的水平会对指标造成较大的变化,所以该因子对指标的影响大,反之,影响就小;各因子不同水平对指标的影响图。 2数据的方差分析:在方差分析中,我们假定每一试验是独立进展的,每一试验条件下的试验指标服从正态分布,这些分布的均值与试验的条件有关,可能不等,但它们的方差是相等的。平方和分解:由于因子A的水平不同所引起的数据波动的度量。仍用T1、T2、T3表示其三个水平下的试验结果的平均,用表示试验结果的总平均。T1、T2、T3与的离差平方

19、和,记为。这里乘以3是因为每一水平重复进展了三次试验。SA除了误差外只反映因子A的水平间的差异,即由于因子A的水平不同所引起的试验结果的波动。F比:称离差平方和与自由度的比为均方,用因子的均方与误差的均方进展比拟,当F因MS因/MSeF1-f因,fe时,认为在显著性水平上因子是显著的,其中MS因,f因分别是因子的均方与自由度,MSe,fe分别是误差的均方与自由度。为此需要给出因子与误差的自由度。同方差分析中所述,一个因子的自由度是其水平数1,在正交设计中因子是置于正交表的列上,为表达方便,也称正交表一列的自由度为其水平数1,即q1,因子的自由度与所在列的自由度应该相等。而误差平方和为正交表上空

20、白列的平方和相加而得,其自由度为正交表上空白列的自由度相加。总平方和的自由度是试验次数1,即n1。自由度相应的关系式为fT=f1+f2+fp。计算:通过代数运算,可以用下式计算一列平方和与总平方和:、。最正确条件的选择:对显著因子应该选择其最好的水平,因为其水平变化会造成指标的显著不同,而对不显著因子可以任意选择水平,实际中常可根据降低本钱、操作方便等来考虑其水平的选择。考点8:有交互作用的正交设计与数据分析 重点等级:1试验设计的步骤:明确试验目的;明确试验指标;确定试验中所考虑的因子与水平,并确定可能存在并要考察的交互作用;选用适宜的正交表。 2数据分析:方差分析;最正确条件的选择。 3防

21、止混杂:根据表头设计应防止混杂的原那么,选择正交表时必须满足条件:“所考察的因子与交互作用自由度之和n-1”,其中n是正交表的行数。不过在存在交互作用的场合,这一条件满足时还不一定能用来安排试验,所以这仅是一个必要条件。第三章 抽样检验考点1:抽样检验 重点等级:抽样检验的特点是:检验对象是一批产品,根据抽样结果应用统计原理推断产品批的接收与否。一般用于:破坏性检验,如产品的寿命试验等可靠性试验、材料的疲劳试验、零件的强度检验等;批量很大,全数检验工作量很大的产品的检验,如螺钉、销钉、垫圈、电阻等;测量对象是散装或流程性材料,如煤炭、矿石、水泥、钢水,整卷钢板的检验等;其他不适于使用全数检验或

22、全数检验不经济的场合。 按检验特性值的属性可以将抽样检验分为计数抽样检验和计量抽样检验两大类。计数抽样检验又包括计件抽样检验和计点抽样检验,计件抽样检验是根据被检样本中的不合格产品数,推断整批产品的接收与否。计点抽样检验是根据被检样本中的产品包含的不合格数,推断整批产品的接收与否。计量抽样检验是通过测量被检样本中的产品质量特性的具体数值并与标准进展比拟,进而推断整批产品的承受与否。 按抽样的次数也即抽取样本的个数,抽样检验又可以分为:一次抽样检验:是从检验批中只抽取一个样本就对该批产品作出是否接收的判断;二次抽样检验:是一次抽样检验的延伸,它要求对一批产品抽取至多两个样本即作出批接收与否的结论

23、,当从第一个样本不能判定批接收与否时,再抽第二个样本,然后由两个样本的结果来确定批是否被接收;屡次抽样:是二次抽样的进一步推广,例如五次抽样,那么允许最多抽取5个样本才最终确定批是否接收。序贯抽样检验不限制抽样次数,每次抽取一个单位产品,直至按规那么作出是否接收批的判断为止。考点2:名词术语 重点等级:1单位产品:它是为实施抽样检验的需要而划分的根本产品单位。例如一个有形的实体;一定量的材料;一项效劳、一次活动或一个过程;一个组织或个人以及上述工程的任何组合。有很多单位产品是自然形成的,如一个零件、一台机床。 2检验批:这是提交进展检验的一批产品,也是作为检验对象而聚集起来的一批产品。通常检验

24、批应由同型号、同等级和同种类,且生产条件和生产时间根本一样的单位产品组成。根据生产方式或组批方式的不同,检验批又分为孤立批和连续批。 3批量:检验批中单位产品的数量,常用N来表示。 4不合格:在抽样检验中,不合格是指单位产品的任何一个质量特性不满足标准要求。如:A类不合格:认为最被关注的一种不合格;B类不合格:认为关注程度比A类稍低的一种类型的不合格;C类不合格:关注程度低于A类和B类的一类不合格。 5不合格品:具有一个或一个以上的不合格的单位产品,称为不合格品。如:A类不合格品:有一个或一个以上A类不合格,同时还可能包含B类和(或)C类不合格的产品;B类不合格品:有一个或一个以上B类不合格,

25、也可能有C类不合格,但没有A类不合格的产品;C类不合格品:有一个或一个以上C类不合格,但没有A类、B类不合格的产品。 6在计数抽样检验衡量批质量的方法有:批不合格品率p:批的不合格品数D除以批量N;批不合格品百分数:批的不合格品数除以批量,再乘以100;批每百单位产品不合格数:批的不合格数C除以批量,再乘以100。计量检验衡量批质量的方法有:批中所有单位产品的某个特性的平均值,如电灯泡的平均使用寿命;批中所有单位产品的某个特性的标准差或变异系数等。 7过程平均:在规定的时段或生产量内平均的过程质量水平,即一系列初次交检批的平均质量。其表示方法与批质量的表示方法一样,但意义有所不同,过程平均表示

26、的是在稳定的加工过程中一系列批的平均不合格品率,而不是某个交检批的质量。假设有k批产品,其批量分别为N1,N2,Nk,经检验,其不合格品数分别为D1,D2,Dk,那么过程平均为:。 8接收质量限AQL:当一个连续系列批被提交验收抽样时,可允许的最差过程平均质量水平。它是对生产方的过程质量提出的要求,是允许的生产方过程平均(不合格品率)的最大值。 9极限质量LQ:对于一个孤立批,为了抽样检验,限制在某一低接收概率的质量水平。它是在抽样检验中对孤立批规定的不应接收的批质量(不合格品率)的最小值。考点3:抽样方案及对披可接收性的判断 重点等级:抽样检验的对象是一批产品,一批产品的可接收性即通过抽样检

27、验判断批的接收与否,可以通过样本批的质量指标来衡量。在理论上可以确定一个批接收的质量标准pt,假设单个交检批质量水平ppt,那么这批产品可接收;假设ppt,那么这批产品不予接收。但实际中除非进展全检,不可能获得p的实际值,因此不能以此来对批的可接收性进展判断。 二次抽样对批质量的判断允许最多抽两个样本。在抽检过程中,如果第一个样本量n1中的不合格(品)数d1不超过第一个接收数Ac1,那么判断批接收;如果d1等于或大于第一个拒收数Re1,那么不接收该批;如果d1大于Ac1,但小于Re1,那么继续抽第二个样本,设第二个样本中不合格(品)数为d2,当d1+d2小于等于第二个接收数Ac2时,判断该批产

28、品接收,如果d1+d2大于或等于第二个拒收数Re2(=Ac2+1),那么判断该批产品不接收。如果企业大量或连续成批稳定的生产,或从供方长期采购,质量要求主要是对过程质量提出要求,如GB中的AQL指标。根据批、过程和检后的平均质量要求都可以设计抽样方案,质量要求不同,设计的抽样方案不同。但无论哪种方案起到的作用应该是一样的,即满足质量要求的批尽可能接收,不满足要求的批尽可能不收。考点4:抽样方案的特性 重点等级:1接收概率及抽样特性OC曲线:接收概率的计算方法有:超几何分布计算法:;二项分布计算法:;泊松分布计算法:e。抽样方案的接收概率P依赖于批质量水平p,当p变化时P是p的函数,通常也记为L

29、(p)。L(p)随批质量p变化的曲线称为抽样特性曲线或OC曲线。 2抽样方案的两类风险:生产方风险:指生产方所承当的批质量合格而被承受的风险,又称第一类错误的概率,一般用表示;使用方风险:是指使用方所承当的接收质量不合格批的风险,又称第二类错误的概率,一般用表示。 3平均检验总数与平均检出质量:平均检验总数ATI:是平均每批的总检验数目,包括样本量和不接收批的全检量,这个指标衡量了检验的经济性;平均检出质量:是指检验后的批平均质量,记为AOQ。考点5:技术标准型抽样检验 重点等级: 计数标准型抽样检验就是同时规定对生产方的质量要求和对使用方的质量保护的抽样检验。典型的标准型抽样方案确定为:事先

30、确定两个质量水平,p0与p1,p0p1,希望不合格品率为p1的批尽可能不被接收,设其接收概率L(p1)=;希望不合格品率为p0的批尽可能高概率接收,设其不接收概率1-L(p0)=。一般规定,。 1抽样表的构成:计数标准型一次抽样表只要给出p0,p1,就可以从中求出样本量n和接收数Ac。 2抽样程序:确定质量标准;确定p0,p1值:p0,p1值(p0p1应由供需双方协商决定。作为选取p0,p1的标准,取,。确定p0时,应考虑不合格或不合格品类别及其对顾客损失的严重程度。通常,A类不合格或不合格品的p0值要选得比B类的要小;而B类不合格或不合格品的p0值又应选得比C类的要小。p1的选取,一般应使p

31、1与p0拉开一定的距离,即要求p1p0,p1/p0过小,会增加抽检产品的数量,使检验费用增加;批的组成:如何组成检验批,对于质量保证有很大的影响。组成批的根本原那么是:同一批内的产品应当是在同一制造条件下生产的。批量越大,单位产品所占的检验费用的比例就越小;检索抽样方案;样本的抽取:随机抽样方法很多,常用的抽样方法有:简单随机抽样、系统抽样法、分层抽样法和整群抽样法。由于系统抽样法操作简便,实施起来不易出过失,因而在生产现场人们乐于使用它。整群抽样法的优点是,抽样实施方便。缺点是,由于样本只来自个别几个群体,而不能均匀地分布在总体中,因而代表性差,抽样误差大。这种方法常用在工序控制中;样本的检

32、验;批的判断;批的处置。考点6:计数调整型抽样检验概述 重点等级:计数调整型抽样检验是根据过去的检验情况,按一套规那么随时调整检验的严格程度,从而改变也即调整抽样检验方案。计数调整型抽样方案不是一个单一的抽样方案,而是由一组严格度不同的抽样方案和一套转移规那么组成的抽样体系。因为计数调整型方案的选择完全依赖于产品的实际质量,检验的宽严程度就反映了产品质量的优劣,同时也为使用方选择供货方提供依据。 以GB/T28281-2003为代表的计数调整型抽样检验的主要特点有:主要适用于连续批检验;接收质量限(AQL)及其作用:反映了使用方对生产过程质量稳定性的要求,即要求在生产连续稳定的根底上的过程不合

33、格品率的最大值。AQL是可以接收和不可以接收的过程平均之间的界限值。接收质量限AQL用不合格品百分数或每百单位产品不合格数表示,当以不合格品百分数表示质量水平时,AQL值不超过10,当以每百单位不合格数表示时,可使用的AQL值最高可达每百单位产品中有1000个不合格。考点7:GB/T 2828.1的使用程序 重点等级:计数调整型抽样标准GBT 28281由三局部组成:正文、主表和辅助图表,正文中主要给出了本标准所用到的一些名词术语和实施检验的规那么;主表局部包括样本量字码表和正常、加严和放宽的一次、二次和五次抽样表。辅助图表局部主要给出了方案的OC曲线、平均样本量ASN曲线和数值。 根据GB/

34、T 28281规定,抽样标准的使用程序如下: 1质量标准和不合格分类确实定; 2抽样方案检索要素确实定; 3抽样方案的检索包括;一次抽样方案的检索:由样本量字码读出样本量n,再从样本量字码所在行和规定的接收质量限所在列相交处,读出判定数组Ac,Re。二次抽样方案的检索; 4样本的抽取; 5抽样方案及对批的可承受性的判断:在GBT 28281中的抽样方案包括一次,二次及屡次(五次)抽样。根据样本中的不合格(品)数及接收准那么来判断是接收批、不接收批还是需要抽取下一个样本。对于产品具有多个质量特性且分别需要检验的情形,只有当该批产品的所有抽样方案检验结果均为接收时,才能判定该批产品最终接收; 6转

35、移规那么; 7交验批的处理:对判为接收的批,使用方应整批接收,但使用方有权不接收样本中发现的任何不合格品,生产方必须对这些不合格品加以修理或用合格品替换。负责部门应明确规定对不接收批的再检验是采用正常检验还是加严检验,再检验是针对所有不合格项还是针对最初造成的不合格类别。再检验应针对产品的所有不合格类型进展; 8进一步的信息:抽检特性曲线(OC曲线):在GBT 28281中,虽然只给出了一次正常检验的OC曲线,但是它们同样适用于二次和屡次的正常检验,以及一次、二次和屡次的加严检验。平均样本量是指为了作出接收或不接收决定的平均每批抽取的单位产品数。这是计数调整型抽样检验标准中重要的经济指标。一般

36、地说,二次正常检验抽样方案的ASN值比一次正常检验抽样方案的ASN值要小,屡次正常检验抽样方案的ASN又比二次正常检验抽样方案的ASN要小。考点8:抽样方案检索要素确实定 重点等级:1过程平均的估计:用于估计过程平均不合格品率的批数,一般不应少于20批。一般来讲,在生产条件根本稳定的情况下,用于估计过程平均不合格品率的产品批数越多,检验的单位产品数量越大,对产品质量水平的估计越可靠。 2接收质量限AQL确实定:接收质量限AQL是对生产方过程平均的要求,在确定AQL时应以产品为核心,应考虑所检产品特性的重要程度。一般A类不合格(品)的AQL值应远远小于B类不合格(品)的AQL值,B类不合格(品)

37、的AQL值小于C类不合格(品)的AQL值。对于同一不合格类的多个工程也可以规定一个AQL值,在规定时注意,工程越多,AQL值应大一些。在确定AQL时也要考虑产品用途,如对于同一种电子元器件,一般用于军用设备比用于民用设备所选的AQL值应小些;产品的复杂程度、发现缺陷的难易程度均影响着AQL的取值,产品复杂程度大或缺陷只能在整机运行时才发现时,AQL值应小些。在确定AQL值时,也必须考虑产品对下道工序的影响和产品的价格,产品对下道工序影响越大,AQL取值越小;产品越贵重,不合格造成的损失越大,AQL应越小。AQL确实定应同时考虑检验的经济性。在制定AQL值时除考虑上述因素外,还要兼顾生产企业和同

38、行业生产的实际特点,要考虑同行业是否能满足要求,如果不能满足过高的要求,产品批大量不接收,会影响使用方如期接收产品,并造成双方的经济损失。在确定AQL值时应兼顾企业其他的与质量有关的要求和指标。 3批量:批量是指提交检验批中单位产品的数量。从抽样检验的观点来看,大批量的优点是,从大批中抽取大样本是经济的,而大样本对批质量有着较高的判别力。批的组成、批量的提出以及识别批的方式,应由供货方与订货方协商确定。 4检验水平(IL)的选择:一般的,N愈大,样本量与批量的比值n/N就愈小。在GBT 28281中,检验水平有两类:一般检验水平和特殊检验水平,一般检验包括、三个检验水平,无特殊要求时均采用一般

39、检验水平。特殊检验(又称小样本检验水平)规定了S-1、S-2、S-3、S-4四个检验水平,一般用于检验费用较高并允许有较高风险的场合。对于不同的检验水平,样本量也不同。检验水平比检验水平判别能力低,而检验水平比检验水平判别能力高。检验水平能给予使用方较高的质量保证,另外不同的检验水平对使用方风险的影响远远大于对生产方风险的影响。选择检验水平应考虑以下几点:产品的复杂程度与价格,构造简单、价格低廉的产品检验水平应低些,检验费用高的产品应选择低检验水平;破坏性检验选低水平或特殊检验水平;生产的稳定性差或新产品应选高检验水平,批与批之间的质量差异性大必须选高水平,批内质量波动幅度小,可采用低水平。

40、5检验严格程度的规定:GBT28281规定了三种严格程度不同的检验,这里的严格度是指提交批所承受检验的宽严程度不同。三种检验分别是:正常检验、加严检验和放宽检验。正常方案是指过程平均优于AQI使用的抽样方案,此时的抽样方案使过程平均优于AQL的产品批以高概率接收,加严检验是比正常检验更严厉的一种抽样方案,当连续批的检验结果已说明过程平均可能劣于AQL值时,应进展加严检验,以更好的保护使用方的利益。放宽检验的样本量比相应的正常检验方案小,因此其鉴别能力小于正常检验,当系列批的检验结果说明过程平均远好于可接收质量限时,可使用放宽检验,以节省样本量。在检验开场时,一般采用正常检验。 6抽样方案类型的

41、选取:GBT 28281中规定了一次、二次和五次抽检方案类型,对于同一个AQL值和同一个样本量字码,采用任何一种抽检方案类型,其OC曲线根本上是一致的。选择抽样方案类型主要考虑的因素有:产品的检验和抽样的费用。从心理效果上讲,二次(和五次)抽样比一次抽样好,因此往往使用方愿意采用二次或屡次抽样方案。在使用GBT28281时注意,使用一次抽样方案没有接收的批不能继续使用二次抽样方案判定。 7检验批的组成:GBT28281规定,检验批可以是投产批、销售批、运输批,但每个批应该是同型号、同等级、同种类的产品,且由生产条件和生产时间根本一样的单位产品组成。考点9:转移规那么 重点等级:1从正常检验转到

42、加严检验:GBT 28281中规定无特殊情况检验一般从正常检验开场。只要初检(即第一次提交检验,而缺乏不接收批经过返修或挑选后再次提交检验)批中,连续5批或不到5批中就有2批不接收,那么应从下批起转到加严检验。 2从加严检验转到正常检验:进展加严检验时,如果连续5批初次检验接收,那么从下批起恢复正常检验。 3从正常检验转到放宽检验:从正常检验转为放宽检验必须同时满足:当前的转移得分至少是30分;生产稳定;负责部门认为放宽检验可取。 4从放宽检验转到正常检验:进展放宽检验时,如果出现下面任何一种情况,就必须转回正常检验:有1批检验不接收;生产不稳定或延迟;负责部门认为有必要恢复正常检验。 5暂停检验:在使用GBT 28281的转移规那么时,应注意由正常检验转为加严检验是强制执行的,而由正常检验转为放宽检验是非强制的。考点10:孤立披抽样检验及GB/T 15239的使用 重点等级: 1GBT 15239的特点为:孤立批及对孤立批的检验;以极限质量LQ为质量指标:对一个产品批来说,是否被接收,关键取决于生产方或使用方验收时对检验批的质量要求,在GBT 15239中规定了极限质量LQ,它是与较低的接收概

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 文案大全

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁