《《中考总复习》湖南省娄底市2023年中考数学试题(解析版)新.doc》由会员分享,可在线阅读,更多相关《《中考总复习》湖南省娄底市2023年中考数学试题(解析版)新.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2013年湖南省娄底市中考数学试卷一、选择题(共10小题)1(2013娄底)2013的倒数是()ABC2013D2013考点:倒数。专题:计算题。分析:根据倒数的定义直接解答即可解答:解:2013=1,2013的倒数是故选A点评:本题主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数2(2013娄底)不等式组的解集在数轴上表示为()A B C D 考点:在数轴上表示不等式的解集;解一元一次不等式组。专题:常规题型。分析:先求出两个不等式的解集,然后把解集表示在数轴上即可进行选择解答:解:,解不等式得,x1,解不等式得,x2,在数轴上表示如下:故选B点评:本题考查了
2、一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(,向右画;,向左画),在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示3(2013娄底)娄底市针对城区中小学日益突出的“大班额”问题,决定自2013年起启动中心城区化解大班额四年(2013年2015年)行动计划,计划投入资金8.71亿元,力争新增学位3.29万个3.29万用科学记数法表示为()A3.29105B3.29106C3.29104D3.29103考点:科学记数法表示较大的数。专题:应用题。分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看
3、把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数解答:解:3.29万=3.29104,故选C点评:本题考查了科学记数法,科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4(2013娄底)下列命题中,假命题是()A平行四边形是中心对称图形B三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C对于简单的随机样本,可以用样本的方差去估计总体的方差D若x2=y2,则x=y考点:命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体。分析:
4、根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可解答:解:A平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D若x2=y2,则x=y,不是x=y,故该命题是假命题;故选D点评:本题考查了命题真假的判断,属于基础题根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项5(2013娄
5、底)如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD是大圆的直径,ABCD,CDMN,则图中阴影部分的面积是()A4B3C2D考点:扇形面积的计算;轴对称的性质。专题:探究型。分析:由ABCD,CDMN可知阴影部分的面积恰好为正方形MNEF外接圆面积的,再根据圆的面积公式进行解答即可解答:解:ABCD,CDMN,阴影部分的面积恰好为正方形MNEF外接圆面积的,正方形MNEF的四个顶点在直径为4的大圆上,S阴影=()2=故选D点评:本题考查的是扇形的面积及轴对称的性质,根据题意得出阴影部分的面积恰好为正方形MNEF外接圆面积的是解答此题的关键6(2013娄底)
6、对于一次函数y=2x+4,下列结论错误的是()A函数值随自变量的增大而减小B函数的图象不经过第三象限C函数的图象向下平移4个单位长度得y=2x的图象D函数的图象与x轴的交点坐标是(0,4)考点:一次函数的性质;一次函数图象与几何变换。专题:探究型。分析:分别根据一次函数的性质及函数图象平移的法则进行解答即可解答:解:A一次函数y=2x+4中k=20,函数值随x的增大而减小,故本选项正确;B一次函数y=2x+4中k=20,b=40,此函数的图象经过一二四象限,不经过第三象限,故本选项正确;C由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=2x的图象,故本选项正确;D令y=0,则x=
7、2,函数的图象与x轴的交点坐标是(2,0),故本选项错误故选D点评:本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键7(2013娄底)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A289(1x)2=256B256(1x)2=289C289(12x)=256D256(12x)=289考点:由实际问题抽象出一元二次方程。专题:增长率问题。分析:设平均每次的降价率为x,则经过两次降价后的价格是289(1x)2,根据关键语句“连续两
8、次降价后为256元,”可得方程289(1x)2=256解答:解:设平均每次降价的百分率为x,则第一降价售价为289(1x),则第二次降价为289(1x)2,由题意得:289(1x)2=256故选:A点评:此题主要考查求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b8(2013娄底)已知反比例函数的图象经过点(1,2),则它的解析式是()Ay=By=Cy=Dy=考点:待定系数法求反比例函数解析式。专题:计算题。分析:设解析式为,由于反比例函数的图象经过点(1,2),代入反比例函数即可求得k的值解答:解:设反比例函数图象设解析式为,
9、将点(1,2)代入得,k=12=2,则函数解析式为y=故选B点评:本题考查了待定系数法求函数解析式,将点(1,2)代入反比例函数,求出系数k是解题的关键9(2013娄底)一组数据为:2,2,3,4,5,5,5,6,则下列说法正确的是()A这组数据的众数是2B这组数据的平均数是3C这组数据的极差是4D这组数据的中位数是5考点:极差;算术平均数;中位数;众数。专题:计算题。分析:分别根据众数、平均数、极差、中位数的定义解答解答:解:A5出现了3次,在该组数据中出现的次数最多,是该组数据的众数,故本选项错误;B这组数据的平均数为=(2+2+3+4+5+5+5+6)=4,故本选项错误;C这组数据的最大
10、值与最小值的差为62=4,故极差为4,故本选项正确;D将改组数据从小到大排列:2,2,3,4,5,5,5,6,处于中间位置的数为4和5,中位数为=4.5,故本选项错误故选C点评:本题考查了极差、算术平均数、中位数、众数,知道各统计量是解题的关键10(2013娄底)如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是() A B C D考点:点、线、面、体。专题:常规题型。分析:矩形旋转一周得到的是圆柱,选择是圆柱的选项即可解答:解:矩形绕一边所在的直线旋转一周得到的是圆柱故选C点评:本题考查了点、线、面、体的知识,熟记常见的平面图形转动所成的几何体是解题的关键,此类题目主要考查同学们的空
11、间想象能力二、填空题(共8小题)11(2013娄底)计算:|2|+(3)0=1考点:实数的运算;零指数幂。专题:计算题。分析:分别根据绝对值的性质、0指数幂及算术平方根的定义计算出各数,再根据实数的运算法则进行计算即可解答:解:原式=2+12=1故答案为:1点评:本题考查的是实数的运算,熟知绝对值的性质、0指数幂及算术平方根的定义是解答此题的关键12(2013娄底)如图,FEON,OE平分MON,FEO=28,则MFE=56度考点:三角形的外角性质;角平分线的定义;平行线的性质。专题:探究型。分析:先根据平行线的性质得出NOE=FEO,再根据角平分线的性质得出NOE=EOF,由三角形外角的性质
12、即可得出结论解答:解:FEON,FEO=28,NOE=FEO=28,OE平分MON,NOE=EOF=28,MFE是EOF的外角,MFE=NOE+EOF=28+28=56故答案为:56点评:本题考查的是三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和13(2013娄底)在1,0, 1,中任取一个数,取到无理数的概率是考点:概率公式;无理数。分析:由题意可得共有6种等可能的结果,其中无理数有:,共2种情况,则可利用概率公式求解解答:解:共有6种等可能的结果,无理数有:,共2种情况,取到无理数的概率是:=故答案为:点评:此题考查了概率公式的应用与无理数的定义此题比较简单,注意用到的知识点
13、为:概率=所求情况数与总情况数之比14(2013娄底)如图,O的直径CD垂直于AB,AOC=48,则BDC=20度考点:圆周角定理;垂径定理。专题:探究型。分析:连接OB,先根据O的直径CD垂直于AB得出=,由等弧所对的圆周角相等可知BOC=AOC,再根据圆周角定理即可得出结论解答:解:连接OB,O的直径CD垂直于AB,=,BOC=AOC=40,BDC=AOC=40=20故答案为:20点评:本题考查的是圆周角定理及垂径定理,根据题意得出=是解答此题的关键15(2013娄底)写出一个x的值,使|x1|=x1成立,你写出的x的值是2(答案不唯一)考点:绝对值。专题:开放型。分析:根据非负数的绝对值
14、等于它本身,那么可得x10,解得x1,故答案是2(答案不唯一)解答:解:|x1|=x1成立,x10,解得x1,故答案是2(答案不唯一)点评:本题考查了绝对值,解题的关键是知道负数的绝对值等于其相反数,非负数的绝对值等于它本身16(2013娄底)如图,AB的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=2考点:坐标与图形变化-平移。专题:计算题。分析:根据平移前后的坐标变化,得到平移方向,从而求出a、b的值解答:解:A(1,0)转化为A1(2,a)横坐标增加了1,B(0,2)转化为B1(b,3)纵坐标增加了1,则a=0+1
15、=1,b=0+1=1,故a+b=1+1=2故答案为:2点评:本题考查了坐标与图形的变化平移,找到坐标的变化规律是解题的关键17(2013娄底)如图,在一场羽毛球比赛中,站在场内M处的运动员林丹把球从N点击到了对方内的B点,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM=3.42米考点:相似三角形的应用。分析:首先根据题意易得ABONAM,然后根据相似三角形的对应边成比例,即可求得答案解答:解:根据题意得:AOBM,NMBM,AONM,ABONAM,OA=1.52米,OB=4米,OM=5米,BM=OB+OM=4+5=9(米),解得:NM=3.42(米),林
16、丹起跳后击球点N离地面的距离NM为3.42米故答案为:3.42点评:此题考查了相似三角形的应用此题比较简单,注意掌握相似三角形的对应边成比例定理的应用,注意把实际问题转化为数学问题求解18(2013娄底)如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2013个图案中“”,共503个考点:规律型:图形的变化类。分析:本题的关键是要找出4个图形一循环,然后再求2013被4整除,从而确定是共第503解答:解:根据题意可知梅花是1,2,3,4即4个一循环所以20134=503所以共有503个故选答案为503点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力对于找规律的题目首先应
17、找出哪些部分发生了变化,是按照什么规律变化的通过分析找到各部分的变化规律后直接利用规律求解三解答题(共7小题)19(2013娄底)先化简:,再请你选择一个合适的数作为x的值代入求值考点:分式的化简求值。专题:开放型。分析:先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可解答:解:原式=x1,根据分式的意义可知,x0,且x1,当x=2时,原式=21=1点评:本题考查了分式的化简求值,解题的关键是分子、分母的因式分解,以及通分、约分20(2013娄底)如图,小红同学用仪器测量一棵大树AB的高度,在C处测得ADG=30,在E处测得AFG=6
18、0,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,1.732)考点:解直角三角形的应用-仰角俯角问题。分析:首先根据题意可得GB=EF=CD=1.5米,DF=CE=8米,然后设AG=x米,GF=y米,则在RtAFG与RtADG,利用正切函数,即可求得x与y的关系,解方程组即可求得答案解答:解:根据题意得:四边形DCEF、DCBG是矩形,GB=EF=CD=1.5米,DF=CE=8米,设AG=x米,GF=y米,在RtAFG中,tanAFG=tan60=,在RtADG中,tanADG=tan30=,x=4,y=4,AG=4米,FG=4米,AB=AG+GB=4+1.58
19、.4(米)这棵树AB的高度为8.4米点评:本题考查仰角的定义注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想与方程思想的应用21(2013娄底)学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?考点:条形统
20、计图;用样本估计总体;扇形统计图。分析:(1)根据C小组的频数和其所占的百分比求得总人数即可;(2)用调查的人数乘以B小组所占的百分比即可求得B组的频数;(3)用总人数乘以不满意人数所占的百分比即可解答:解:(1)由条形统计图知:C小组的频数为40,由扇形统计图知:C小组所占的百分比为20%,故调查的总人数为:4020%=200人;(2)B小组的人数为:20050%=100人,(3)1000(150%25%20%)=50人,故该校对教学感到不满意的人数有50人点评:本题考查了条形统计图的知识,解题的关键是仔细的读图并从图形中找到进一步解题的有关信息22(2013娄底)体育文化用品商店购进篮球和
21、排球共20个,进价和售价如表,全部销售完后共获利润260元篮球排球进价(元/个)8050售价(元/个)9560(2)销售6个排球的利润与销售几个篮球的利润相等?考点:二元一次方程组的应用。分析:( 1)设购进篮球x个,购进排球y个,根据等量关系:篮球和排球共20个全部销售完后共获利润260元可的方程组,解方程组即可;(2)设销售6个排球的利润与销售a个篮球的利润相等,根据题意可得等量关系:每个排球的利润6=每个篮球的利润a,列出方程,解可得答案解答:解:(1)设购进篮球x个,购进排球y个,由题意得:解得:,答:购进篮球12个,购进排球8个;(2)设销售6个排球的利润与销售a个篮球的利润相等,由
22、题意得:6(6050)=(9580)a,解得:a=4,答:销售6个排球的利润与销售4个篮球的利润相等点评:此题主要考查了二元一次方程组的应用,以及一元一次方程组的应用,关键是弄清题意,找出题目中的等量关系,列出方程组或方程23(2013娄底)如图,在矩形ABCD中,M、N分别是ADBC的中点,P、Q分别是BM、DN的中点(1)求证:MBANDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由考点:矩形的性质;全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定。分析:(1)根据矩形的性质和中点的定义,利用SAS判定MBANDC;(2)四边形MPNQ是菱形,连接AN,有(1)可得到B
23、M=CN,再有中点得到PM=NQ,再通过证明MQDNPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形解答:证明:(1)四边形ABCD是矩形,AB=CD,AD=BC,A=C=90,在矩形ABCD中,M、N分别是ADBC的中点,AM=AD,CN=BC,AM=CN,在MABNDC,MABNDC;(2)四边形MPNQ是菱形,理由如下:连接AN,易证:ABNBAM,AN=BM,MABNDC,BM=DN,P、Q分别是BM、DN的中点,PM=NQ,DM=BN,DQ=BP,MDQ=NBP,MQDNPB四边形MPNQ是平行四边形,M是A
24、B中点,Q是DN中点,MQ=AN,MQ=BM,MP=BM,MP=MQ,四边形MQNP是菱形点评:本题考查了矩形的性质、全等三角形的判定和全等三角形的性质、三角形中位线定理以及平行四边形的判定和菱形的判定方法,属于基础题目24(2013娄底)已知二次函数y=x2(m22)x2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1x2,与y轴交于点C,且满足(1)求这个二次函数的解析式;(2)探究:在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形?如果有,求出点P的坐标;如果没有,请说明理由考点:二次函数综合题。分析:(1)欲求抛物线的解析式,关键是求得m的值根据题中所给关系式,
25、利用一元二次方程根与系数的关系,可以求得m的值,从而问题得到解决注意:解答中求得两个m的值,需要进行检验,把不符合题意的m值舍去;(2)利用平行四边形的性质构造全等三角形,根据全等关系求得P点的纵坐标,进而得到P点的横坐标,从而求得P点坐标解答:解:(1)二次函数y=x2(m22)x2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1x2,令y=0,即x2(m22)x2m=0 ,则有:x1+x2=m22,x1x2=2m=,化简得到:m2+m2=0,解得m1=2,m2=1当m=2时,方程为:x22x+4=0,其判别式=b24ac=120,此时抛物线与x轴没有交点,不符合题意,舍去;当m=
26、1时,方程为:x2+x2=0,其判别式=b24ac=90,此时抛物线与x轴有两个不同的交点,符合题意m=1,抛物线的解析式为y=x2+x2(2)假设在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形如图所示,连接PAPBACBC,过点P作PDx轴于D点抛物线y=x2+x2与x轴交于AB两点,与y轴交于C点,A(2,0),B(1,0),C(0,2),OB=1,OC=2PACB为平行四边形,PABC,PA=BC,PAD=CBO,APD=OCB在RtPAD与RtCBO中,RtPADRtCBO,PD=OC=2,即yP=2,直线解析式为y=x+3,xP=1,P(1,2)所以在直线y=x+3上
27、存在一点P,使四边形PACB为平行四边形,P点坐标为(1,2)点评:本题是代数几何综合题,考查了二次函数的图象与性质、抛物线与x轴的交点、一元二次方程根的解法及根与系数关系、一次函数、平行四边形的性质以及全等三角形的判定与性质等方面的知识,涉及的考点较多,有一定的难度25(2013娄底)如图,在ABC中,AB=AC,B=30,BC=8,D在边BC上,E在线段DC上,DE=4,DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N(1)求证:BMDCNE;(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式(
28、要求写出自变量x的取值范围);当x为何值时,y有最大值?并求y的最大值考点:相似三角形的判定与性质;二次函数的最值;等边三角形的性质;切线的性质;解直角三角形。专题:代数几何综合题。分析:(1)由AB=AC,B=30,根据等边对等角,可求得C=B=30,又由DEF是等边三角形,根据等边三角形的性质,易求得MDB=NEC=120,BMD=B=C=CNE=30,即可判定:BMDCNE;(2)首先过点M作MHBC,设BD=x,由以M为圆心,以MF为半径的圆与BC相切,可得MH=MF=4x,由(1)可得MD=BD,然后在RtDMH中,利用正弦函数,即可求得答案;(3)首先求得ABC的面积,继而求得BD
29、M的面积,然后由相似三角形的性质,可求得BCN的面积,再利用二次函数的最值问题,即可求得答案解答:(1)证明:AB=AC,B=C=30,DEF是等边三角形,FDE=FED=60,MDB=NEC=120,BMD=B=C=CNE=30,BMDCNE;(2)过点M作MHBC,以M为圆心,以MF为半径的圆与BC相切,MH=MF,设BD=x,DEF是等边三角形,FDE=60,B=30,BMD=FDEB=6030=30=B,DM=BD=x,MH=MF=DFMD=4x,在RtDMH中,sinMDH=sin60=,解得:x=168,当BD=168时,以M为圆心,以MF为半径的圆与BC相切;(3)过点M作MHB
30、C于H,过点A作AKBC于K,AB=AC,BK=BC=8=4,B=30,AK=BKtanB=4=,SABC=BCAK=8=,由(2)得:MD=BD=x,MH=MDsinMDH=x,SBDM=xx=x2,DEF是等边三角形且DE=4,BC=8,EC=BCBDDE=8x4=4x,BMDCNE,SBDM:SCEN=()2=,SCEN=(4x)2,y=SABCSCENSBDM=x2(4x)2=x2+2x+=(x2)2+(0x4),当x=2时,y有最大值,最大值为点评:此题考查了相似三角形的判定与性质、等腰三角形的性质、等边三角形的性质、二次函数的性质以及三角函数等知识此题综合性较强,难度较大,注意数形结合思想与方程思想的应用- 18 -