通径分析精讲.pptx

上传人:莉*** 文档编号:77429483 上传时间:2023-03-14 格式:PPTX 页数:32 大小:144.64KB
返回 下载 相关 举报
通径分析精讲.pptx_第1页
第1页 / 共32页
通径分析精讲.pptx_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《通径分析精讲.pptx》由会员分享,可在线阅读,更多相关《通径分析精讲.pptx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、主要内容通径图与模型模型系数的分解递归通径模型与非递归通径模型通径模型的识别(或称确认)与检验第1页/共32页在研究多个相关变量间的线性关系时,除了可以采用多元线性回归分析和偏相关分析,还可以采用通径分析(path analysis)。第2页/共32页通径图与模型多变量统计分析是研究变量之间有相互联系、影响或有相关性的学科。最方便而又直观地表示变量间相互关系的方法是用通径图。第3页/共32页为直观起见,先讨论一个因变量、两个自变量的情况。设三个相关变量y 与x1、x2 间存在线性关系,y 为依变量(结果),x1、x2 为自变量(原因)且彼此相关,回归方程为:第4页/共32页或其中e 为剩余项。

2、第5页/共32页自变量x1、x2 与依变量y 的通径图 第6页/共32页在图中,单箭头线“”表示变量间存在着因果关系,方向为由原因到结果,称为通径(path),也称为直接通径。双箭头线“”表示变量间存在着平行关系(互为因果),称为相关线(correlation line),一条相关线相当于两条尾端相联的通径。将包含两条或两条以上通径、也可以包含一条相关线的链称为间接通径。如图中,x1 y 为通径或直接通径,x1 x2 y为间接通径。这种用来表示相关变量间因果关系与平行关系的箭形图称为通径图(path chart)。第7页/共32页图1.1 中,A 是父亲的智商(IQ),B 是母亲的智商(IQ)

3、,C 是子女的智商(IQ),X 是与A 及B 不相关的另外原因变量,A、B、C 间的关系如图1。第8页/共32页第9页/共32页这里单箭头表示A 及B 是原因变量,C 是结果变量;双向箭头表示相关性。图1.1 表示A 与B 有相关性,而不认为X 与A 及B 有相关性,图1 可写成公式:C=A+B+X(这里未考察每个变量的影响大小)第10页/共32页图1.2 是常用的可靠性检验(Reliability test)通径图,A 及B 如分别表示儿童的身高及体重,T 是影响A 及B 的公共因子(factor),比如可称为“生长因子”。这个T 是不能直接测量到的,它是隐藏在A 及B 内部。也可以说A 及

4、B 的大小是受T 所决定,而U 及V 则是A、B 中不受T 支配的残差(或称误差)变量。第11页/共32页第12页/共32页图1.3 是表示有时间性的通径图,其中A、B 表示两个变量,X、Y是残差,足标1、2、3 分别表示在时间1、时间2、时间3。第13页/共32页第14页/共32页变量的分类按可否直接测量到该变量,变量可分为“表型变量”(Manifest Variable,也称显变量,它总是用一个方框去识别它)、及隐型变量(Latent Variable,它总是用一个圆形框去识别它)。这里的隐型变量(即隐变量)是无法直接测量到的,它应当是客观存在的。第15页/共32页如按变量的“因果关系”分

5、类,即按通径图中箭头的指向去划分变量,则可以把箭头起始的变量(也称原因变量)称为“外生变量”(Exogenous Variable)、独立变量(Independent)、源变量(Source)或上游变量;这是因为此变量的变化由通径图以外的原因产生的。第16页/共32页把箭头指向(终点)的变量称为“内生变量”(Endogenous Variable)、因变量(Dependent)、下游变量或结果变量;因为此变量的取值依赖于箭头上端变量的变化及误差项,所以被称为“内生”。注意:此处所述的“原因变量”是比较含糊的,不可严格地当作“因果关系”中的原因,但它可以为实际工作者提出一种重要的启示:便于从专业

6、角度去检验它是否确是真实的“原因”。第17页/共32页直接作用与间接作用如图1.3,内生变量与外生变量之间有一单向箭头连接的称为直接作用,比如图1.3 中A 1 对A 2、A 2 对B3 及B1 对B3 均有直接作用,但A 1 对B3 没有直接作用。A 1 的变化可引起A 2 的变化,而A 2 的变化又引起B3 的变化,所有A 1 对B3 有间接作用。间接作用可以不止一个通路。目前的统计软件SAS 及SPSS 不认为A 1 可以通过B1 而作用于B3,因为A 1 与B1 仅是相关而不是“因果”关系。第18页/共32页通径系数(path coefficient)通径图直观、形象地表达了相关变量间

7、的关系,仅定性地表达还不够,还须进一步用数量表示因果关系中原因对结果影响的相对重要程度与性质、平行关系中变量间相关的相对重要程度与性质,也就是必须用数量表示“通径”与“相关线”的相对重要程度与性质。第19页/共32页通径系数描述通径图中变量间“因果关系”强弱的指标是通径系数。其定义就是内生变量(因变量)在外生变量(自变量)上的偏回归系数。当表型变量是标准化数据时,通径系数就是标准化回归系数。单箭头上的小写字母表示通径系数,双箭头表示相关性,如果A 1 与B1 是标准化变量,则双箭头上的r 即是它们间的相关系数。第20页/共32页图1.3 的结构方程式为:A 2=aA 1+bB1+eXB3=cB

8、1+dA 2+f Y第21页/共32页但A 1 与B1 间的相关性无法在方程式中表示出来。图1.3 中B1 在B3 上的直接作用是c;而B1 通过A 2 作用于B3 上的间接作用为bd;因此B1 对于B3 的总的作用(也称总效应)是c+bd。在早期的通径分析中,由于A 1 与B1 有相关性(r),而认为B1 可以通过A1,再经过A 2,可以间接地作用于B3,大小为rad。第22页/共32页二、模型系数分解分解简单回归系数的通径分析计算一个变量对最终反应变量的各种影响以不同通径传递的间接影响在控制某些变量的条件下的总影响的分解工作第23页/共32页分解简单相关系数的通径分析分解简单相关系数的通径

9、分析标准化数据中,通径图中任何两变量之间可以求模型的相关系数:在一个构造合适的通径图中,任何两个变量间的相关系数就是连结这两点之间的所有复合链上的数值(相关系数及通径系数)的乘积之和。第24页/共32页如图1.3:A 1 到B3 的模型相关系数为rA1B3=ad+rc+rbd?B1 到B3 的模型相关系数为r B1 B3=bd+c第25页/共32页三、递归通径模型与非递归通径模型三、递归通径模型与非递归通径模型1、递归通径模型因果关系结构中全部为单向链条关系,无反馈作用的模型,称为递归模型。第26页/共32页2、非递归模型(1)模型中任何两个变量之间存在双向因果关系、即有直接反馈作用;(2)某

10、个变量存在自身反馈;(3)存在间接反馈;(4)内生变量的误差项与其它项目相关;第27页/共32页递归通径分析的假设条件(1)通径模型中各变量之间的关系为线性、可加的因果关系;(2)每一内生变量的误差项与其前置变量不得相关,同时也不得与其他内生变量的误差项相关;(3)模型中的因果关系必须为单向,不得包括各种形式的反馈作用;(4)各变量测量不存在误差。第28页/共32页四、通径图四、通径图(模型模型)的识别的识别(或称确或称确认认)通径图的完全性一个合适的通径图中:(1)所有外生变量之间,如有相关性,都应用双箭头表示出来。(2)所有内生变量之间不画相关性双箭头;但内生变量的残差之间如有相关性,则要

11、用双箭头画出,没有双箭头表示的都被认为是不相关的。(3)在内生变量与外生变量之间有显著意义的直接作用,其箭头都应被画出来。第29页/共32页(1)恰好通径图:通径图中独立未知参数(包括隐变量的方差、残差的方差)的个数恰好与样本中所能得出的方程组的个数相等。(2)识别不足通径图:通径图中独立未知参数的个数多于样本中所能得出的方程组的个数。因为这时参数的解有无限多组,即解很不确定,这是不能允许的。(3)过度识别通径图:通径图中独立未知参数的个数少于样本中所能得出的方程组的个数。统计学家偏爱这种模型,因为人们可以在待估的参数上附加不同的条件以使所求得的参数满足统计学要求。第30页/共32页因此在构造统计图时,首先要识别一个通径图是否满足统计学的要求是最基本的。基本原则是:尽可能地用较少的参数去拟合样本数据,这样的结果也容易去寻找专业的解释。SAS及SPSS 统计软件中的隐变量软件在执行统计分析时首先是计算待估参数个数。对于“识别不足”的模型会自动停止计算。使用者如不想对模型的通径图作大的改动,一个简单办法是,先指定一些未知参数的值,特别是隐变量的方差,更是可以自由地指定。第31页/共32页感谢您的观看!第32页/共32页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁