平面问题基本理论.pptx

上传人:莉*** 文档编号:77422427 上传时间:2023-03-14 格式:PPTX 页数:25 大小:273.54KB
返回 下载 相关 举报
平面问题基本理论.pptx_第1页
第1页 / 共25页
平面问题基本理论.pptx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《平面问题基本理论.pptx》由会员分享,可在线阅读,更多相关《平面问题基本理论.pptx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、平面问题基本理论平面问题基本理论因为板很薄,荷载不沿厚度变化,应力是连续因为板很薄,荷载不沿厚度变化,应力是连续分布的,所以可以认为,在整个薄板:分布的,所以可以认为,在整个薄板:z z=0 =0 zxzx=0 =0 zyzy=0=0 平面应力问题有那些应变分量和位移分量平面应力问题有那些应变分量和位移分量?薄板的应力为薄板的应力为:x x y y xyxy 且与且与z z无关,无关,为为x x、y y的函数的函数,称为平面应力问题称为平面应力问题The remaining stress components The remaining stress components x x,y y,xy

2、xy,may be considered to be functions of xmay be considered to be functions of x、y y onlyonly,such a problem is called such a problem is called a plane a plane stress problem.stress problem.第1页/共25页二、平面应变问题二、平面应变问题Plane StrianPlane Strian1 1、构件的形状:、构件的形状:yzx(1 1)足够长柱体,两端光滑刚性约束足够长柱体,两端光滑刚性约束(2 2)无限长柱体

3、,两端自由无限长柱体,两端自由Very long cylindrical or prismatial bodyVery long cylindrical or prismatial body2 2、荷载的性质:、荷载的性质:(1 1)平行于横截面平行于横截面(2 2)沿长度不变沿长度不变(任意横截面上任意横截面上的受力是相同的)的受力是相同的)All the forces being parallel to a cross section of the body and not varying along the axial direction.All the forces being par

4、allel to a cross section of the body and not varying along the axial direction.第2页/共25页称为平面应变问题称为平面应变问题结论:结论:yzx平面应变问题平面应变问题有那些应力分有那些应力分量?量?(1 1)应力、应变只是应力、应变只是x x、y y的函数的函数()()w=0w=0(z z),),应变应变分量只有分量只有 x x y y xyxyWith any cross section of the body as xy plane,the With any cross section of the body

5、 as xy plane,the components will be functions of xcomponents will be functions of x、y onlyy only,due to due to symmetry,the shearing stresses symmetry,the shearing stresses zxzx=0,=0,zyzy=0,=0,and and w=0w=0,such a problem is called such a problem is called a plane strain a plane strain problem.prob

6、lem.第3页/共25页归纳:归纳:平面问题中,共有八个未知量:平面问题中,共有八个未知量:x x y y xy xy x x y y xyxy u uv v求解弹性力学平面问题,就是要求解弹性力学平面问题,就是要根据根据已知条件已知条件(荷载,边界条件)(荷载,边界条件)求未知求未知的应力分量、应变分量和位移分量。的应力分量、应变分量和位移分量。第4页/共25页xyO取图示微六面取图示微六面体为隔离体,体为隔离体,厚度厚度 t=1t=1Isolate elementIsolate element2 2 平衡微分方程(静力平衡条件)平衡微分方程(静力平衡条件)y yx xy xcXYDiffe

7、rential Equations of EquilibriumDifferential Equations of Equilibrium建立平衡方程建立平衡方程Formulate Equilibrium EquationsFormulate Equilibrium Equations第5页/共25页 y yx xy xXYxyoXYc M MC C=0 =0 (1 1)xyxy=yxyx X=0 X=0 (2 2)第6页/共25页 Y=0 Y=0 (3 3)(平面应力(平面应力问题与平面问题与平面应变问题)应变问题)The elasticity problem is statically i

8、ndeterminate.To solve for the unknow stresses,we have to consider the strains and displacements.The elasticity problem is statically indeterminate.To solve for the unknow stresses,we have to consider the strains and displacements.Differential Equations of Equilibrium are applicable both to plane str

9、ess problems and plane strain problems.Differential Equations of Equilibrium are applicable both to plane stress problems and plane strain problems.第7页/共25页3 3 几何方程几何方程 刚体位移刚体位移AB P取如图所取如图所示隔离体:示隔离体:PABxyoPA=dxPB=dyuvP P、A A、B B各各点的位移如点的位移如图所示图所示Geometrical Equations.Rigid-body DisplacementGeometric

10、al Equations.Rigid-body Displacement第8页/共25页 x x:PAPA的伸长量的伸长量 y y:PBPB的伸长量的伸长量normal strainnormal strainnormal strainnormal strain第9页/共25页 xyxy或或 yxyx :PAPA与与PBPB夹角的改变量:夹角的改变量:+ABPuvPABxyo 第10页/共25页几何方程几何方程Geometrical EquationsGeometrical Equations :已知位移分量,就能求出应变分量。已知位移分量,就能求出应变分量。(平面应力(平面应力问题与平面问题与

11、平面应变问题)应变问题)Geometrical EquationsGeometrical Equations are applicable both to plane stress problems and plane strain problems.are applicable both to plane stress problems and plane strain problems.For a given set of displacement components u and v,the strain components are defined by Geometrical Equ

12、ations.For a given set of displacement components u and v,the strain components are defined by Geometrical Equations.For a given set of strain components,the displacement components u and v are not wholly determinate.For a given set of strain components,the displacement components u and v are not wh

13、olly determinate.第11页/共25页已知应变分量,能否求出位移分量?已知应变分量,能否求出位移分量?刚体位移刚体位移(Rigid-body DisplacementRigid-body Displacement):设应变分量已知:设应变分量已知:x x=0=0,y y=0=0 ,xyxy=0=0 u=f1(y)v=f2(x)第12页/共25页u=fu=f1 1(y y)=u=u0 0+y y v=fv=f2 2(x x)=v=v0 0-x x (变形为零时的位移)(变形为零时的位移)These are the displacement components correspond

14、ing to zero trains and cannot but be the rigid-body displacement.These are the displacement components corresponding to zero trains and cannot but be the rigid-body displacement.第13页/共25页称为刚体位移称为刚体位移(the rigid-body displacement)(the rigid-body displacement):其中:其中若若 u u0 0=0=0 v v0 0=0=0 和位移为:和位移为:弹性

15、体中任意点弹性体中任意点P P(x x,y y)其位移为:其位移为:u=uu=u0 0+y y v=v v=v0 0-x x Pxxyyr rou u0 0,v v0 0弹性体沿弹性体沿x x、y y轴方向的平移轴方向的平移 弹性体沿绕弹性体沿绕z z轴的转动,为什么?轴的转动,为什么?the rigid-body translationsthe rigid-body translationsthe rigid-body rotationthe rigid-body rotation第14页/共25页和位移的方向和位移的方向:结论结论:和位移的方向垂直于和位移的方向垂直于OPOP,沿切线方向,

16、所沿切线方向,所以以 表示弹性体绕表示弹性体绕z轴轴的转动的转动Pxxyyr ru=yv=yo第15页/共25页归纳:归纳:弹性体在变形为零时有刚体位移,所以当物弹性体在变形为零时有刚体位移,所以当物体发生一定的变形时,由于约束条件不同,体发生一定的变形时,由于约束条件不同,可能具有不同的刚体位移,即由变形不能完可能具有不同的刚体位移,即由变形不能完全确定位移全确定位移(已知(已知,不能完全确定不能完全确定u u,v v),),须考虑边界条件。须考虑边界条件。或者说,没有约束的弹性体存在任意的,不或者说,没有约束的弹性体存在任意的,不确定的刚体位移。确定的刚体位移。An elastic bod

17、y can have any rigid-body displacements for zero strains.HenceAn elastic body can have any rigid-body displacements for zero strains.Hence,at a given state of strain,the body may have different rigid-body displacements under different conditions of constraint,in order to determine the actual displac

18、ement of the body,there must be three proper conditions of constraint for the determination of the three constants.at a given state of strain,the body may have different rigid-body displacements under different conditions of constraint,in order to determine the actual displacement of the body,there

19、must be three proper conditions of constraint for the determination of the three constants.第16页/共25页4 4 物理方程物理方程(应力、应变之间的关系)(应力、应变之间的关系)Physical EquationsPhysical EquationsThe relations between stresses and strainsThe relations between stresses and strains完全弹性、各向同性体,完全弹性、各向同性体,HOOKHOOK定理:定理:In an is

20、otropic and perfectly elastic bodyIn an isotropic and perfectly elastic body,the relations the relations between stresses and strains based on Hookebetween stresses and strains based on Hookes laws law:第17页/共25页E E、G G、为常数为常数(three elastic constants)(three elastic constants),不随坐标、方,不随坐标、方向而变化向而变化其中:

21、E is the modulus of elasticity or YoungE is the modulus of elasticity or Youngs moduluss modulus,m is the Poisson is the Poissons ratios ratio,G is the shear modulus or modulus of rigidity.G is the shear modulus or modulus of rigidity.第18页/共25页在平面应力问题中在平面应力问题中 z z=0 =0 zxzx=0 =0 zyzy=0 =0 而且而且In a p

22、lane stress problemIn a plane stress problem物理方程物理方程 (Physical Equations)(Physical Equations)第19页/共25页物理方程另一种形式:物理方程另一种形式:第20页/共25页物理方程物理方程 在平面应变问题中在平面应变问题中 z z=0 =0 zxzx=0 =0 zyzy=0 =0 (In a plane strain problem)(In a plane strain problem)(Physical Equations)(Physical Equations)第21页/共25页将平面应力问题物理方程

23、中的将平面应力问题物理方程中的E E/E E/(1-1-2 2););/(1-1-)就得平面应变问题的物理方程。就得平面应变问题的物理方程。平面应力问题与平面应变问题两者的物平面应力问题与平面应变问题两者的物理方程不同。理方程不同。The Physical Equations of plane stress problems and plane strain problems are different.The Physical Equations of plane stress problems and plane strain problems are different.平面应力问题与平

24、面应变问题两者的物理平面应力问题与平面应变问题两者的物理方程虽然不同,但平衡微分方程和几何方方程虽然不同,但平衡微分方程和几何方程是相同的。程是相同的。Physical Equations are differentPhysical Equations are different,Differential Equations of Equilibrium and Geometrical Equations same.Differential Equations of Equilibrium and Geometrical Equations same.第22页/共25页平面问题中,基本未知量为

25、:平面问题中,基本未知量为:x x,y y,xyxy,x x,y y,xyxy,u u,v v(八个)八个)求解平面问题的基本方程:求解平面问题的基本方程:平衡微分方程(平衡微分方程(2 2个)个)Differential Equations of Equilibrium Differential Equations of Equilibrium 几何方程几何方程 (3 3个)个)Geometrical EquationsGeometrical Equations 物理方程物理方程 (3 3个)个)Physical Equations Physical Equations再考虑边界条件再考虑边界条件(Boundary ConditionsBoundary Conditions),即可求出所有未知量。,即可求出所有未知量。第23页/共25页第24页/共25页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁