《2022年最新人教版九年级数学下册第二十九章-投影与视图同步测试试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十九章-投影与视图同步测试试卷(名师精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十九章-投影与视图同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由4个相同的正方体组成的立体图形,它的左视图是( )A BCD2、在下列四幅图形中,能表示两棵小树在
2、同一时刻阳光下影子的图形的可能是( )AABBCCDD3、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为()mA2B4C6D84、如图,根据三视图,这个立体图形的名称是()A三棱锥B三棱柱C四柱D四锥5、如图所示的几何体左视图是( )ABCD6、如图所示,该几何体的俯视图是ABCD7、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH若量得米,米,则立柱CD的高为( )A2.5mB2.7mC3mD3.6m8、根据三视图,求出这个几何体的侧面积( )ABC
3、D9、下列几何体中,俯视图为三角形的是( )ABCD10、如图所示的支架(一种小零件)的两个台阶的高度相等,则它的左视图为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB_米2、圆锥的母线长为5,侧面展开图的面积为20,则圆锥主视图的面积为_3、如图所示是一个几何体的三视图,这个几何体的名称是_4、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号 5、如图是某几何体的三视图(其
4、中主视图也称正视图,左视图也称侧视图)已知主视图和左视图是两个全等的矩形若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为_三、解答题(5小题,每小题10分,共计50分)1、画出图中几何体的主视图、左视图、俯视图2、由5个相同的小立方块搭成的几何体如图所示,请画出它的三视图3、作图题:如图,是由一些棱长为单位1的相同的小正方体组合成的简单几何体请在方格中分别画出几何体的主视图、左视图4、如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示(1)请你通过画图确定灯泡所在的位置(2)如果小明的身高AB1.6m,他的影子长AC1.4m,且他到路
5、灯的距离AD2.1m,求灯泡的高5、下列几何体是用相同的正方体搭成的,画出从三个不同方向看到的图形 -参考答案-一、单选题1、A【分析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可【详解】从左面看所得到的图形为A选项中的图形 故选A【点睛】本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图掌握以上知识是解题的关键2、D【分析】由太阳光是平行光线,可知同一时刻下,影子的朝向一致,由此进行求解即可【详解】解:太阳光是平行光线,因此同一时刻下,影子的朝向是一致的故选:D【点睛】考查主要考查了的影子问题
6、,解题的关键在于能够知道太阳光是平行光线3、B【分析】根据题意,画出示意图,易得:EDCFDC,进而可得,即DC2EDFD,代入数据可得答案【详解】解:根据题意,作EFC,树高为CD,且ECF90,ED2m,FD8m;E+F90,E+ECD90,ECDF,EDCFDC,即DC2EDFD2816,解得CD4m故选:B【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键4、B【分析】由主视图和左视图,可以确定是柱体,再结合俯视图即可得到正确答案【详解】解:由主视图和左视图可以确定是柱体,又因为俯视图是三角形,可以确定该柱体是三棱柱故选:B【点睛】本题考查由三视图确定几何体,牢记相
7、关知识点并能够灵活应用是解题关键5、C【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中【详解】解:从几何体的左面看,是一列两个矩形,矩形的中间用虚线隔开故选C【点睛】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置6、D【分析】根据俯视图是从物体上面向下面正投影得到的投影图,即可求解【详解】解:根据题意得:D选项是该几何体的俯视图故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面
8、向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键7、A【分析】将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可【详解】如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点MBG/ME/DHBGA=MEC,BAG=DCE=90,MD=HECD=CM+DM=1+1.5=2.5故答案选:A【点睛】本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键8、D【分析】首先根据题意得出这个几何体是圆柱,然后根据三视图得出圆柱
9、的高和底面半径,最后根据圆柱的侧面积公式求解即可【详解】解:由题意知,几何体是底面直径为10、高为20 的圆柱,所以其侧面积为故选:D【点睛】此题考查了几何体的三视图,求圆柱的表面积,解题的关键是熟练掌握几何体的三视图,求圆柱的表面积公式9、(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b错误,应该是a6,b11,a+b17故选:B【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键19D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图【详解
10、】从上方朝下看只有D选项为三角形故选:D【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形从视图反过来考虑几何体时,它有多种可能性例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力10、C【分析】找到从左面看所得到的图形即可,注意所有的看到的棱用实线表示,看不见的棱用虚线表示【详解】解:从左面看去,是两个有公共边的矩形,如图所示:故选:C【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图视图中每一个闭合的线框都表示物体上的一个平面,而相
11、连的两个闭合线框常不在一个平面上二、填空题1、6【解析】【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答【详解】解: ,当王华在CG处时,RtDCGRtDBA,即,当王华在EH处时,RtFEHRtFBA,即,CGEH1.5米,CD1米,CE3米,EF2米,设ABx,BCy,即,即2(y+1)y+5,解得:y3,则,解得,x6米即路灯A的高度AB6米【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求
12、公共边的长度2、12【解析】【分析】圆锥的主视图是等腰三角形,根据圆锥侧面积公式S=rl代入数据求出圆锥的底面半径长,再由勾股定理求出圆锥的高即可【详解】解:根据圆锥侧面积公式:S=rl,圆锥的母线长为5,侧面展开图的面积为20,故20=5r,解得:r=4由勾股定理可得圆锥的高圆锥的主视图是一个底边为8,高为3的等腰三角形,它的面积=,故答案为:12【点睛】本题考查了三视图的知识,圆锥侧面积公式的应用,正确记忆圆锥侧面积公式是解题关键3、圆柱体#圆柱【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视
13、图为圆可得此几何体为圆柱体故答案为:圆柱体【点睛】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了空间想象能力4、【解析】【分析】在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可【详解】根据三视图的定义可知:第一个三视图所对应的几何体为;第二个三视图所对应的几何体为;第三个三视图对应的几何体为;第四个三视图对应的几何体为;故答案为:【点睛】本题考查三视图,熟知三视图的定义是解题的关键5、【解析】【分析】由三视图判断出几何体的形状以及相关长度,根据圆柱的体
14、积公式计算即可【详解】解:由三视图可知:该几何体是圆柱,该圆柱的底面直径为2,高为3,这个几何体的体积为=,故答案为:【点睛】本题考查了几何体的三视图,圆柱的体积,解题的关键是判断出该几何体为圆柱三、解答题1、见解析【分析】主视图有3列,每列小正方形数目分别为1,1,2;左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每列小正方形数目分别为1,2,1依此画出图形即可求解【详解】解:如图所示:【点睛】此题考查的知识点是简单组合体的三视图,关键是明确主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形2、见解析【分析】主视图从左往右3列,正方形的个数依次为2,1,1;左视图
15、从左往右2列,正方形的个数依次为2,1;俯视图从左往右3列,正方形的个数依次为1,1,2;依此画出图形即可【详解】解:所求三视图如图所示【点睛】本题考查画几何体的三视图,用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形3、见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;据此可画出图形【详解】解:如图所示:【点睛】本题考查简单组合体的三视图,理解视图的意义是解决问题的关键4、(1)见解析;(2)【分析】(1)连接CB延长CB交DE于O,点O即为所求;(2)根据,构建方程,可得结论【详解】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子;(2)解:由已知可得,OD4m灯泡的高为4m【点睛】本题考查了中心投影,相似三角形的性质与判定,掌握中心投影是解题的关键5、见解析【分析】从正面看:共有3列,从左往右分别有3,2,1个小正方形;从左面看:共有2列,从左往右分别有3,1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形据此可画出图形【详解】解:如图所示:【点睛】本题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形